Modulating the Photophysical Properties of Twisted Donor–Acceptor–Donor π-Conjugated Molecules: Effect of Heteroatoms, Molecular Conformation, and Molecular Topology

杂原子 共轭体系 系统间交叉 分子 磷光 有机发光二极管 接受者 化学 激发态 光化学 单重态 带隙 有机电子学 分子轨道 材料科学 荧光 化学物理 纳米技术 光电子学 晶体管 聚合物 戒指(化学) 有机化学 物理 原子物理学 量子力学 图层(电子) 凝聚态物理 电压
作者
Youhei Takeda
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (15): 2219-2232 被引量:58
标识
DOI:10.1021/acs.accounts.4c00353
摘要

ConspectusModulating the photophysical properties of organic emitters through molecular design is a fundamental endeavor in materials science. A critical aspect of this process is the control of the excited-state energy, which is essential for the development of triplet exciton-harvesting organic emitters, such as those with thermally activated delayed fluorescence and room-temperature phosphorescence. These emitters are pivotal for developing highly efficient organic light-emitting diodes and bioimaging probes. A particularly promising class of these emitters consists of twisted donor-acceptor organic π-conjugated scaffolds. These structures facilitate a spatial separation of the frontier molecular orbitals, which is crucial for achieving a narrow singlet-triplet energy gap. This narrow gap is necessary to overcome the endothermic reverse intersystem crossing process, enhancing the efficiency of thermally activated delayed fluorescence. To precisely modulate the photophysical properties of these emitting materials, it is essential to understand the electronic structures of new donor-acceptor scaffolds, especially those influenced by heteroatoms, as well as their conformations and topologies. This understanding not only improves the efficiency of these emitters but also expands their potential applications in advance technologies.In 2014, the Takeda group made a significant breakthrough by discovering a novel method for synthesizing U-shaped diazaacenes (dibenzo[a,j]phenazine) through an oxidative skeletal rearrangement of 1,1'-binaphthalene-2,2'-diamines. This class of compounds is typically challenging to synthesize using conventional organic reactions. The resulting unique geometric and electronic structure of U-shaped diazaacenes opened new possibilities for photophysical applications. Leveraging the U-shaped structure, photoluminescent properties, and high electron affinity, we developed twisted donor-acceptor-donor compounds. These compounds exhibit efficient thermally activated delayed fluorescence, stimuli-responsive luminochromism, heavy atom-free room-temperature phosphorescence, and anion-responsive red shifts. These innovative emitters have demonstrated significant potential in various practical applications, including organic light-emitting diode devices and advanced sensing systems.In this Account, I summarize our achievements in modulating the photofunctions of dibenzo[a,j]phenazine-cored twisted donor-acceptor-donor compounds by controlling excited-state singlet-triplet energy gaps through conformational regulation. Our comprehensive studies revealed the significant impact of heteroatoms, molecular conformations, and topologies on the photophysics of these compounds. These findings highlight the importance of molecular engineering in tailoring the photophysical properties of organic donor-acceptor π-conjugated materials for specific applications. Our research has demonstrated that incorporating heteroatoms into the molecular framework effectively tunes the electronic properties and, consequently, the photophysical behavior of the compounds. Understanding the influence of heteroatoms, conformational dynamics, and molecular topology on excited-state behavior will open new avenues for next-generation optoelectronic devices and biological technologies. These advancements include ultra-low-power displays, photonic communication, and super-resolution biomedical imaging. Ultimately, our work highlights the potential of strategic molecular design in driving innovation across various fields, paving the way for the development of cutting-edge technologies that leverage the unique properties of organic emitters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听雨梅完成签到 ,获得积分10
11秒前
loren313完成签到,获得积分0
18秒前
Ha完成签到,获得积分10
19秒前
酷酷海豚完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
毛毛弟完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
41秒前
寒冷又菡完成签到 ,获得积分10
44秒前
monster完成签到 ,获得积分10
46秒前
49秒前
attention完成签到,获得积分10
52秒前
点点完成签到 ,获得积分10
57秒前
独步出营完成签到 ,获得积分10
1分钟前
meiqi完成签到 ,获得积分10
1分钟前
龙龖龘完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
研友_ZeqRYZ发布了新的文献求助20
1分钟前
栀蓝完成签到 ,获得积分10
1分钟前
Xiaoyisheng完成签到,获得积分10
1分钟前
1分钟前
陈皮完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
孤独手机完成签到 ,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
落落完成签到 ,获得积分0
1分钟前
研友_ZeqRYZ完成签到,获得积分10
1分钟前
学术小白发布了新的文献求助10
1分钟前
Liuruijia完成签到 ,获得积分10
1分钟前
sonicker完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小七完成签到,获得积分10
1分钟前
2385697574完成签到,获得积分10
1分钟前
Yolanda_Xu完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Lz555完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
荣幸完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767343
关于积分的说明 15026174
捐赠科研通 4803440
什么是DOI,文献DOI怎么找? 2568305
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247