已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Taylor & Francis]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢歌完成签到 ,获得积分10
1秒前
hoh发布了新的文献求助10
2秒前
科研通AI6应助Ran采纳,获得30
2秒前
田様应助辰的小猫采纳,获得10
3秒前
7秒前
阳光项链完成签到,获得积分10
11秒前
一条鱼叫弗里登完成签到 ,获得积分10
12秒前
蓝莓小蛋糕完成签到 ,获得积分10
15秒前
01259完成签到 ,获得积分10
19秒前
华仔应助kukudou2采纳,获得10
19秒前
ding应助hoh采纳,获得10
20秒前
211JZH完成签到 ,获得积分10
22秒前
24秒前
田様应助Amy采纳,获得10
27秒前
27秒前
感冒药完成签到 ,获得积分10
32秒前
34秒前
Ran完成签到,获得积分10
36秒前
王富贵发布了新的文献求助10
38秒前
伊绵好完成签到,获得积分10
44秒前
Ran发布了新的文献求助30
46秒前
50秒前
打打应助鱼的宇宙采纳,获得10
51秒前
Linda发布了新的文献求助30
52秒前
53秒前
王富贵完成签到,获得积分10
53秒前
瑾无虞发布了新的文献求助10
55秒前
58秒前
佟语雪完成签到,获得积分10
58秒前
59秒前
YBR完成签到 ,获得积分10
1分钟前
鱼的宇宙发布了新的文献求助10
1分钟前
瑾无虞完成签到,获得积分10
1分钟前
RSU完成签到,获得积分10
1分钟前
ZTLlele完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
桐桐应助搞怪的紫易采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973252
求助须知:如何正确求助?哪些是违规求助? 4228914
关于积分的说明 13171541
捐赠科研通 4017533
什么是DOI,文献DOI怎么找? 2198354
邀请新用户注册赠送积分活动 1211094
关于科研通互助平台的介绍 1125928