已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing toward precision migraine treatment: Predicting responses to preventive medications with machine learning models based on patient and migraine features

偏头痛 医学 托吡酯 氟桂利嗪 噻吗洛尔 阿替洛尔 纳多洛尔 阿米替林 诺曲普利 偏头痛治疗 内科学 普萘洛尔 癫痫 青光眼 血压 精神科 眼科
作者
Chia‐Chun Chiang,Todd J. Schwedt,Gina Dumkrieger,Liguo Wang,Chieh‐Ju Chao,Heather A. Ouellette,Imon Banerjee,Yi‐Chieh Chen,Brandon Jones,Krista M. Burke,Han Wang,Ann Murray,Monique M. Montenegro,Jennifer I. Stern,Mark Whealy,Narayan Kissoon,F. Michael Cutrer
出处
期刊:Headache [Wiley]
卷期号:64 (9): 1094-1108 被引量:17
标识
DOI:10.1111/head.14806
摘要

Abstract Objective To develop machine learning models using patient and migraine features that can predict treatment responses to commonly used migraine preventive medications. Background Currently, there is no accurate way to predict response to migraine preventive medications, and the standard trial‐and‐error approach is inefficient. Methods In this cohort study, we analyzed data from the Mayo Clinic Headache database prospectively collected from 2001 to December 2023. Adult patients with migraine completed questionnaires during their initial headache consultation to record detailed clinical features and then at each follow‐up to track preventive medication changes and monthly headache days. We included patients treated with at least one of the following migraine preventive medications: topiramate, beta‐blockers (propranolol, metoprolol, atenolol, nadolol, timolol), tricyclic antidepressants (amitriptyline, nortriptyline), verapamil, gabapentin, onabotulinumtoxinA, and calcitonin gene‐related peptide (CGRP) monoclonal antibodies (mAbs) (erenumab, fremanezumab, galcanezumab, eptinezumab). We pre‐trained a deep neural network, “TabNet,” using 145 variables, then employed TabNet‐embedded data to construct prediction models for each medication to predict binary outcomes (responder vs. non‐responder). A treatment responder was defined as having at least a 30% reduction in monthly headache days from baseline. All model performances were evaluated, and metrics were reported in the held‐out test set (train 85%, test 15%). SHapley Additive exPlanations (SHAP) were conducted to determine variable importance. Results Our final analysis included 4260 patients. The responder rate for each medication ranged from 28.7% to 34.9%, and the mean time to treatment outcome for each medication ranged from 151.3 to 209.5 days. The CGRP mAb prediction model achieved a high area under the receiver operating characteristics curve (AUC) of 0.825 (95% confidence interval [CI] 0.726, 0.920) and an accuracy of 0.80 (95% CI 0.70, 0.88). The AUCs of prediction models for beta‐blockers, tricyclic antidepressants, topiramate, verapamil, gabapentin, and onabotulinumtoxinA were: 0.664 (95% CI 0.579, 0.745), 0.611 (95% CI 0.562, 0.682), 0.605 (95% CI 0.520, 0.688), 0.673 (95% CI 0.569, 0.724), 0.628 (0.533, 0.661), and 0.581 (95% CI 0.550, 0.632), respectively. Baseline monthly headache days, age, body mass index (BMI), duration of migraine attacks, responses to previous medication trials, cranial autonomic symptoms, family history of headache, and migraine attack triggers were among the most important variables across all models. A variable could have different contributions; for example, lower BMI predicts responsiveness to CGRP mAbs and beta‐blockers, while higher BMI predicts responsiveness to onabotulinumtoxinA, topiramate, and gabapentin. Conclusion We developed an accurate prediction model for CGRP mAbs treatment response, leveraging detailed migraine features gathered from a headache questionnaire before starting treatment. Employing the same methods, the model performances for other medications were less impressive, though similar to the machine learning models reported in the literature for other diseases. This may be due to CGRP mAbs being migraine‐specific. Incorporating medical comorbidities, genomic, and imaging factors might enhance the model performance. We demonstrated that migraine characteristics are important in predicting treatment responses and identified the most crucial predictors for each of the seven types of preventive medications. Our results suggest that precision migraine treatment is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Zoe发布了新的文献求助10
1秒前
2秒前
天天快乐应助灰色头像采纳,获得10
2秒前
多年以后完成签到,获得积分10
2秒前
刘祺芳完成签到,获得积分10
4秒前
4秒前
IAN完成签到,获得积分10
5秒前
6秒前
AlwaysKim发布了新的文献求助10
7秒前
舒适的方盒完成签到 ,获得积分10
7秒前
lily发布了新的文献求助10
7秒前
9秒前
9秒前
葡萄成熟应助ss采纳,获得10
9秒前
Klvercy发布了新的文献求助10
12秒前
今后应助落雨寒星5520采纳,获得10
12秒前
hai关闭了hai文献求助
14秒前
14秒前
hnx1005完成签到 ,获得积分10
15秒前
可爱的函函应助邵小庆采纳,获得10
15秒前
共享精神应助muli采纳,获得10
16秒前
rimi完成签到,获得积分10
18秒前
18秒前
千里共婵娟完成签到,获得积分0
18秒前
所所应助Charley采纳,获得10
19秒前
19秒前
阳光可仁发布了新的文献求助10
19秒前
傲娇石头发布了新的文献求助30
21秒前
FashionBoy应助落雪无痕采纳,获得10
21秒前
ruochenzu发布了新的文献求助10
23秒前
Klvercy完成签到,获得积分20
23秒前
一一完成签到,获得积分10
23秒前
qaxt完成签到,获得积分10
24秒前
lily完成签到,获得积分20
26秒前
傲娇的汽车完成签到 ,获得积分10
26秒前
張医铄完成签到,获得积分10
27秒前
无花果应助李李李采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606375
求助须知:如何正确求助?哪些是违规求助? 4690746
关于积分的说明 14865520
捐赠科研通 4704841
什么是DOI,文献DOI怎么找? 2542593
邀请新用户注册赠送积分活动 1508069
关于科研通互助平台的介绍 1472245