丛枝菌根真菌
生物量(生态学)
生物
农学
环境科学
营养物
温室
菌丝
抗性(生态学)
土壤水分
球囊菌门
土壤生物学
丛枝菌根
菌根
植物
生态学
共生
园艺
细菌
接种
遗传学
作者
Bo Tang,Jing Man,Anika Lehmann,Matthias C. Rillig
摘要
Abstract Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta‐analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta‐analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature‐based solution to sustaining multiple soil functions in a world where drought events are intensifying.
科研通智能强力驱动
Strongly Powered by AbleSci AI