Combining Spatial Transcriptomics, Pseudotime, and Machine Learning Enables Discovery of Biomarkers for Prostate Cancer

前列腺癌 癌症 生物标志物发现 转录组 前列腺 生物标志物 计算生物学 医学 蛋白质组学 生物信息学 计算机科学 病理 肿瘤科 内科学 生物 基因 基因表达 生物化学
作者
Martin Smelik,Daniel Diaz-Roncero Gonzalez,Xiaojing An,Rakesh Heer,Lars Henningsohn,Xinxiu Li,Hui Wang,Yelin Zhao,Mikael Benson
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-25-0269
摘要

Abstract Early cancer diagnosis is crucial but challenging owing to the lack of reliable biomarkers that can be measured using routine clinical methods. The identification of biomarkers for early detection is complicated by each tumor involving changes in the interactions between thousands of genes. In addition to this staggering complexity, these interactions can vary among patients with the same diagnosis as well as within the same tumor. We hypothesized that reliable biomarkers that can be measured with routine methods could be identified by exploiting three facts: (1) the same tumor can have multiple grades of malignant transformation; (2) these grades and their molecular changes can be characterized using spatial transcriptomics; and (3) these changes can be integrated into models of malignant transformation using pseudotime. Pseudotime models were constructed based on spatial transcriptomic data from three independent prostate cancer studies to prioritize the genes that were most correlated with malignant transformation. The identified genes were associated with cancer grade, copy number aberrations, hallmark pathways, and drug targets, and they encoded candidate biomarkers for prostate cancer in mRNA, immunohistochemistry, and proteomics data from the sera, prostate tissue, and urine of more than 2,000 patients with prostate cancer and controls. Machine learning-based prediction models revealed that the biomarkers in urine had an AUC of 0.92 for prostate cancer and were associated with cancer grade. Overall, this study demonstrates the diagnostic potential of combining spatial transcriptomics, pseudotime, and machine learning for prostate cancer, which should be further tested in prospective studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
金色天际线完成签到,获得积分10
1秒前
ccCherub完成签到,获得积分10
1秒前
WX完成签到 ,获得积分10
1秒前
Inter09完成签到,获得积分10
2秒前
半夏完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
一路向北4956完成签到,获得积分10
3秒前
Cynthia应助陈椅子的求学采纳,获得10
3秒前
MM完成签到,获得积分10
3秒前
打打应助VIP采纳,获得10
4秒前
慕青应助myg123采纳,获得10
4秒前
豆子完成签到,获得积分10
5秒前
彩色的蓝天完成签到,获得积分10
5秒前
kanoz完成签到 ,获得积分10
6秒前
匀升完成签到,获得积分10
6秒前
eno完成签到,获得积分10
6秒前
情怀应助MM采纳,获得10
7秒前
平常天佑完成签到,获得积分10
7秒前
8秒前
8秒前
棠棠完成签到 ,获得积分10
9秒前
花花完成签到,获得积分10
9秒前
风的味道完成签到,获得积分10
9秒前
LW完成签到,获得积分10
9秒前
LJJ完成签到,获得积分10
9秒前
香蕉子骞完成签到 ,获得积分10
9秒前
周清素完成签到,获得积分10
10秒前
10秒前
青易完成签到,获得积分10
10秒前
尊敬的小土豆完成签到,获得积分10
10秒前
kingwill应助小王同志采纳,获得20
10秒前
11秒前
饿了就次爪爪完成签到 ,获得积分10
12秒前
12秒前
violet完成签到,获得积分10
13秒前
孤独的大灰狼完成签到 ,获得积分10
13秒前
格子完成签到,获得积分10
13秒前
科目三应助yw采纳,获得10
14秒前
熊猫侠发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577