Whole Heart Segmentation Based on 3D Contour-Guided Multi-Head Attention Network From CT and MRI Images

计算机视觉 人工智能 计算机科学 分割 图像分割 主管(地质) 磁共振成像 医学影像学 模式识别(心理学) 放射科 医学 地质学 地貌学
作者
Feiyan Li,Weisheng Li,Yidong Peng,Yucheng Shu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (10): 7459-7472
标识
DOI:10.1109/jbhi.2025.3584074
摘要

Heart image segmentation is a critical task in medical image processing, which is crucial for the diagnosis and treatment planning of cardiovascular diseases. It helps doctors understand patients' cardiac anatomy and functional status more comprehensively and lays the foundation for personalized medicine and precision medicine research. Addressing the current challenges of rough surfaces on the entire heart, incomplete segmentation of heart substructures, and the lack of structured prediction of pulmonary arteries due to artifacts, scale diversity, uneven intensity, and boundary ambiguity in cardiac computed tomography (CT) and magnetic resonance imaging (MRI) images, we propose a whole heart segmentation algorithm based on 3D contour guided network. The proposed algorithm achieves robust whole heart segmentation results and has few network structure parameters. To enhance the consistency of features extracted by the codec, we propose a 3D codec information integration module to focus on task-related areas. In the final stage of information integration, features of different scales are combined. A 3D contour attention module enhances the perception of the heart's structure and shape. Contour prediction results from the initial stage, generating a low-resolution voxel of the entire heart with contour details. The second stage builds upon the initial phase of secondary learning to achieve multi-label segmentation results. The proposed algorithm achieved average Dice scores of 0.905 and 0.865 for the CT and MRI modalities, respectively, in 40 cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
plasmid完成签到,获得积分10
1秒前
七喜发布了新的文献求助10
2秒前
心灵美的修洁完成签到 ,获得积分10
2秒前
2秒前
2秒前
慕青应助Ruby采纳,获得10
3秒前
lhl发布了新的文献求助10
3秒前
陈帅发布了新的文献求助10
3秒前
7777juju发布了新的文献求助10
4秒前
4秒前
4秒前
刁刁完成签到,获得积分10
4秒前
科研通AI6应助周姮媛采纳,获得10
6秒前
6秒前
大模型应助czx采纳,获得10
6秒前
7秒前
7秒前
7秒前
摩卡桃桃冰完成签到,获得积分10
7秒前
7秒前
琉璃完成签到,获得积分10
8秒前
小冯完成签到 ,获得积分10
8秒前
xinxin完成签到,获得积分10
9秒前
CipherSage应助飞云采纳,获得10
9秒前
9秒前
7ing发布了新的文献求助10
10秒前
10秒前
YIN完成签到,获得积分10
11秒前
little2000完成签到 ,获得积分10
11秒前
QRE发布了新的文献求助20
11秒前
11秒前
彩色大船完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
领导范儿应助伶俐松思采纳,获得10
13秒前
白白胖胖发布了新的文献求助10
13秒前
13秒前
小静吖完成签到 ,获得积分10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388748
求助须知:如何正确求助?哪些是违规求助? 4511007
关于积分的说明 14037429
捐赠科研通 4421757
什么是DOI,文献DOI怎么找? 2428916
邀请新用户注册赠送积分活动 1421496
关于科研通互助平台的介绍 1400650