Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study

医学 接收机工作特性 超声波 放射科 考试(生物学) 诊断准确性 外科肿瘤学 曲线下面积 混乱 回顾性队列研究 医学物理学 核医学 外科 内科学 药代动力学 生物 古生物学 心理学 精神分析
作者
Tian Jiang,Chen Chen,Yahan Zhou,Shenzhou Cai,Yuqi Yan,Sui Lin,Min Lai,Mei Song,Xi Zhu,Qianmeng Pan,Hui Wang,Xiayi Chen,Kai Wang,Jing Xiong,Li-Yu Chen,Dong Xu
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12885-024-12277-8
摘要

Abstract Background To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis. Methods A total of 2211 ultrasound images of 980 pathologically confirmed PTs (Training set: n = 721; Validation set: n = 82; Internal-test set: n = 89; External-test set: n = 88) from 907 patients were retrospectively included in this study. The optimal model was selected and the diagnostic performance evaluation is conducted by utilizing the area under curve (AUC) of the receiver-operating characteristic(ROC) based on five different DL networks constructed at varying depths. Furthermore, a comparison of different seniority radiologists was made in the presence of the optimal auxiliary diagnosis model. Additionally, the diagnostic confusion matrix of the optimal model was calculated, and an analysis and summary of misjudged cases’ characteristics were conducted. Results The Resnet18 demonstrated superior diagnostic performance, with an AUC value of 0.947, accuracy of 88.5%, sensitivity of 78.2%, and specificity of 92.7% in internal-test set, and with an AUC value of 0.925, accuracy of 89.8%, sensitivity of 83.3%, and specificity of 90.6% in external-test set. The PTs were subjectively assessed twice by six radiologists, both with and without the assisted of the model. With the assisted of the model, both junior and senior radiologists demonstrated enhanced diagnostic performance. In the internal-test set, there was an increase in AUC values by 0.062 and 0.082 for junior radiologists respectively, while senior radiologists experienced an improvement of 0.066 and 0.106 in their respective AUC values. Conclusions The DL model based on ultrasound images demonstrates exceptional capability in distinguishing between benign and malignant PTs, thereby assisting radiologists of varying expertise levels to achieve heightened diagnostic performance, and serve as a noninvasive imaging adjunct diagnostic method for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶色小鸡发布了新的文献求助10
1秒前
fang完成签到,获得积分10
1秒前
凡人完成签到,获得积分10
5秒前
科目三应助满当当采纳,获得10
6秒前
6秒前
orixero应助多情老三采纳,获得10
6秒前
125mmD91T完成签到,获得积分10
6秒前
9秒前
英姑应助Chuwei采纳,获得10
10秒前
momo发布了新的文献求助10
11秒前
dennisysz完成签到,获得积分10
11秒前
愤怒的凤发布了新的文献求助10
11秒前
泉竹晓筱完成签到,获得积分10
13秒前
一行白鹭发布了新的文献求助20
14秒前
17秒前
乐乐应助专一的怀绿采纳,获得10
17秒前
潇洒闭月完成签到,获得积分10
18秒前
19秒前
动漫大师发布了新的文献求助10
20秒前
20秒前
Chuwei完成签到 ,获得积分10
21秒前
21秒前
汉堡包应助山高采纳,获得10
22秒前
满当当发布了新的文献求助10
23秒前
Leee完成签到,获得积分20
24秒前
一行白鹭完成签到,获得积分20
24秒前
飘雪发布了新的文献求助20
24秒前
24秒前
24秒前
Xxynysmhxs完成签到 ,获得积分10
25秒前
Chuwei发布了新的文献求助10
25秒前
111完成签到,获得积分10
25秒前
柯南发布了新的文献求助10
26秒前
调皮盼烟发布了新的文献求助10
26秒前
28秒前
29秒前
脑洞疼应助ff采纳,获得30
30秒前
TOW应助Solar energy采纳,获得10
30秒前
英俊延恶发布了新的文献求助20
31秒前
CipherSage应助满当当采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780146
求助须知:如何正确求助?哪些是违规求助? 3325451
关于积分的说明 10223189
捐赠科研通 3040655
什么是DOI,文献DOI怎么找? 1668944
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758623