Research and Application of Deep Learning in Medical Image Reconstruction and Enhancement

人工智能 深度学习 图像(数学) 图像增强 计算机科学 计算机视觉 心理学
作者
Yulu Gong,Hongjie Qiu,Xiaoyi Liu,Yutian Yang,Mengran Zhu
标识
DOI:10.54097/8w12d064
摘要

In recent years, deep learning technology has made remarkable progress in medical image reconstruction and enhancement, and has become one of the research hotspots in the field of medical image processing. This paper discusses the latest research progress and application of deep learning in medical image reconstruction and enhancement. Firstly, the importance of medical image reconstruction and enhancement and the limitations of traditional methods are introduced. Then, a detailed discussion was conducted on the application of deep learning models, including Convolutional Neural Networks (CNN), Generative Adversarial Networks (GAN), and Autoencoders, in medical image processing. Specifically, an analysis and comparison were conducted on the image reconstruction ability of CNN models, the image enhancement effect of GAN models, and the image denoising and reconstruction of Autoencoder models. Then, the advantages and challenges of deep learning model in medical image processing are discussed, and the future development direction is discussed. Finally, the research results of this paper are summarized and the prospect of future research is put forward. The research in this paper provides some enlightenment and reference for researchers and practitioners in the field of medical image processing, which is helpful to promote the continuous innovation and progress of medical image processing technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的囧完成签到,获得积分10
2秒前
糊糊涂涂发布了新的文献求助10
3秒前
4秒前
5秒前
辛勤的囧发布了新的文献求助10
6秒前
8秒前
8秒前
小二郎应助aniu采纳,获得10
8秒前
别吃小米粥完成签到,获得积分10
9秒前
11秒前
Eva发布了新的文献求助20
11秒前
12秒前
13秒前
无限大山发布了新的文献求助10
13秒前
14秒前
15秒前
领导范儿应助雨之夏日采纳,获得200
15秒前
15秒前
汉堡包应助花凉采纳,获得10
15秒前
亿亿亿亿完成签到,获得积分10
16秒前
乐观小之应助wang采纳,获得10
17秒前
17秒前
松山少林学武功完成签到 ,获得积分10
17秒前
18秒前
研友_VZG7GZ应助Eva采纳,获得10
18秒前
19秒前
20秒前
发多多完成签到,获得积分10
21秒前
吱吱发布了新的文献求助10
21秒前
清梦发布了新的文献求助10
23秒前
帅小主完成签到,获得积分20
25秒前
angelinazh发布了新的文献求助10
27秒前
Ava应助安生采纳,获得10
29秒前
33秒前
daffodil发布了新的文献求助30
35秒前
兔兔跑路发布了新的文献求助20
35秒前
在水一方应助发多多采纳,获得10
36秒前
37秒前
wanci应助科研通管家采纳,获得100
38秒前
英俊的铭应助科研通管家采纳,获得10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417