Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,Md Enamul Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier]
卷期号:51: 104174-104174 被引量:157
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘志晨完成签到,获得积分10
1秒前
彼岸完成签到,获得积分10
1秒前
1秒前
轨迹发布了新的文献求助10
1秒前
2秒前
领导范儿应助醉熏的红酒采纳,获得10
2秒前
风趣的无剑完成签到,获得积分10
2秒前
FashionBoy应助taotao采纳,获得10
3秒前
高坚果发布了新的文献求助10
3秒前
胖丁发布了新的文献求助50
3秒前
上官若男应助lkk采纳,获得10
3秒前
爆米花应助胡n采纳,获得10
4秒前
huangdashi发布了新的文献求助10
6秒前
醉熏的红酒完成签到,获得积分10
6秒前
6秒前
6秒前
预激波完成签到,获得积分10
6秒前
yu关闭了yu文献求助
7秒前
英俊的铭应助dsfsd采纳,获得10
7秒前
领导范儿应助潘继坤采纳,获得10
7秒前
7秒前
唯美完成签到,获得积分10
7秒前
乐乐应助纯真的小婷采纳,获得10
7秒前
华仔应助随心采纳,获得20
8秒前
8秒前
小二郎应助xiaoxiao采纳,获得10
8秒前
77发布了新的文献求助10
8秒前
FashionBoy应助愉快梦芝采纳,获得10
9秒前
9秒前
9秒前
所所应助鲸鱼采纳,获得10
9秒前
cccc发布了新的文献求助10
10秒前
实验耗材发布了新的文献求助20
10秒前
binfo完成签到,获得积分0
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
天天快乐应助丽丽采纳,获得10
11秒前
果粒橙完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503