dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI

计算机科学 分割 深度学习 人工智能 残余物 卷积神经网络 过程(计算) 图像分割 脑瘤 模式识别(心理学) 算法 医学 病理 操作系统
作者
Rehan Raza,Usama Ijaz Bajwa,Yasar Mehmood,Muhammad Waqas Anwar,Maryam Jamal
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 103861-103861 被引量:19
标识
DOI:10.1016/j.bspc.2022.103861
摘要

Glioma is the most prevalent and dangerous type of brain tumor which can be life-threatening when its grade is high. The early detection of these tumors can improve and save the life of the patients. The automatic segmentation of brain tumor from magnetic resonance imaging (MRI) plays a vital role in treatment planning and timely diagnosis. Automatic segmentation is a challenging task due to the massive amount of information provided by MRI and the variation in the location and size of the tumor. Therefore, a reliable and authentic method to segment the tumorous region from healthy tissues accurately is an open challenge in the field of deep learning-based medical image analysis. This research paper presents an end-to-end framework for automatic 3D Brain Tumor Segmentation (BTS). The proposed model is a hybrid of the deep residual network and U-Net model (dResU-Net). The residual network is used as an encoder in the proposed architecture with the decoder of the U-Net model to handle the issue of vanishing gradient. The proposed model is designed to take advantage from low-level and high-level features simultaneously for making the prediction. In addition, shortcut connections are employed between residual network to preserve low-level features at each level. Furthermore, skip connections between residual and convolutional blocks in the proposed architecture are used to accelerate the training process. The proposed architecture achieved promising results with the average dice score for the tumor core (TC), whole tumor (WT), and enhancing tumor (ET) on the BraTS 2020 dataset of 0.8357, 0.8660, and 0.8004, respectively. To demonstrate the robustness of the proposed model in real-world clinical settings, validation of the trained model on an external cohort is performed on randomly selected 50 patients of the BraTS 2021 benchmark dataset. The achieved dice scores on the external cohort are 0.8400, 0.8601, and 0.8221 for TC, WT, and ET, respectively. The comparison of results of the proposed approach with the state-of-the-art techniques indicates that dResU-Net can significantly improve the segmentation performance of brain tumor sub-regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carmen发布了新的文献求助10
1秒前
xyao完成签到 ,获得积分10
1秒前
无花果应助小田睡不醒采纳,获得10
1秒前
2秒前
2秒前
sunxs发布了新的文献求助10
3秒前
3秒前
马上毕业发布了新的文献求助10
3秒前
3秒前
4秒前
ypz发布了新的文献求助10
4秒前
4秒前
cheyy完成签到,获得积分20
6秒前
0001发布了新的文献求助10
6秒前
6秒前
哒哒哒发布了新的文献求助10
7秒前
7秒前
8秒前
~~发布了新的文献求助10
8秒前
鲤鱼新竹发布了新的文献求助10
8秒前
Lee完成签到 ,获得积分10
9秒前
Ai香香完成签到,获得积分0
9秒前
9秒前
10秒前
岚风发布了新的文献求助10
11秒前
11秒前
NMZN发布了新的文献求助10
11秒前
qp发布了新的文献求助10
12秒前
猪猪hero应助专心搞学术采纳,获得10
12秒前
12秒前
12秒前
科目三应助傅宛白采纳,获得10
13秒前
13秒前
ding应助Marvel采纳,获得10
13秒前
踏实口红发布了新的文献求助10
13秒前
14秒前
zwy完成签到,获得积分10
15秒前
Owen应助taco采纳,获得10
15秒前
jiangjing发布了新的文献求助50
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814123
求助须知:如何正确求助?哪些是违规求助? 3358369
关于积分的说明 10394045
捐赠科研通 3075673
什么是DOI,文献DOI怎么找? 1689451
邀请新用户注册赠送积分活动 812897
科研通“疑难数据库(出版商)”最低求助积分说明 767404