亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The mechanical behavior and deformation of bicrystalline nanowires

材料科学 纳米线 变形(气象学) 复合材料 纳米技术
作者
Garritt J. Tucker,Zachary H. Aitken,Julia R. Greer,Christopher R. Weinberger
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:21 (1): 015004-015004 被引量:31
标识
DOI:10.1088/0965-0393/21/1/015004
摘要

The competition between free surfaces and internal grain boundaries as preferential sites for dislocation nucleation during plastic deformation in aluminum bicrystalline nanowires is investigated using molecular dynamics simulations at room temperature. A number of nanowires containing various minimum energy interfaces are studied under uniaxial compression at a constant applied strain rate to provide a broad, inclusive look at the competition between the two types of sources. In addition, we conduct a detailed study on the role of the grain boundaries to act as a source, sink, or obstacle for lattice dislocations, as a function of grain boundary structure. This work compares the behavior of bicrystalline nanowires containing both random high-angle boundaries and a series of symmetric tilt grain boundaries to further elucidate the effect of interface structure on its behavior. The results show that grain boundaries in nanowires can be preferred nucleation sites for dislocations and twin boundaries, in addition to efficient sinks and pinning points for migrating dislocations. Plastic deformation behavior at high imposed strains is linked to the underlying deformation processes, such as twinning, dislocation pinning, or dislocation exhaustion/starvation. We also detail some important reactions between lattice dislocations and grain boundaries observed in the simulations, along with the activation of a single-arm source. This work suggests that the cooperation of numerous mechanisms and the structure of internal grain boundaries are crucial in understanding the deformation of bicrystalline nanowires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wackykao完成签到,获得积分10
30秒前
千里草完成签到,获得积分10
32秒前
35秒前
科研通AI5应助阔达碧空采纳,获得10
39秒前
dabai发布了新的文献求助10
40秒前
dabai完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
gszy1975完成签到,获得积分10
2分钟前
唯梦完成签到 ,获得积分10
2分钟前
汉堡包应助Ni采纳,获得10
2分钟前
2分钟前
2分钟前
阔达碧空发布了新的文献求助10
2分钟前
Ni发布了新的文献求助10
2分钟前
2分钟前
wcd完成签到,获得积分10
2分钟前
3分钟前
张靖松完成签到 ,获得积分10
3分钟前
秋蚓完成签到 ,获得积分10
4分钟前
淡然的糖豆完成签到 ,获得积分10
4分钟前
4分钟前
Yeah发布了新的文献求助10
4分钟前
5分钟前
erfan发布了新的文献求助10
5分钟前
大水完成签到 ,获得积分10
6分钟前
hank完成签到 ,获得积分10
6分钟前
erfan完成签到,获得积分10
6分钟前
科研通AI2S应助Yeung采纳,获得10
6分钟前
6分钟前
binyao2024完成签到,获得积分10
7分钟前
郗妫完成签到,获得积分10
7分钟前
Jasper应助娇气的荷花采纳,获得10
7分钟前
大模型应助Ni采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
情怀应助娇气的荷花采纳,获得10
8分钟前
Ni发布了新的文献求助10
8分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827267
求助须知:如何正确求助?哪些是违规求助? 3369590
关于积分的说明 10456565
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699760
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251