溶解有机碳
海水
环境化学
有色溶解有机物
褐背天牛
生物利用度
化学
EC50型
人工海水
遗传算法
沉积物
生物配体模型
有机质
生态毒理学
生态学
生物
浮游植物
有机化学
体外
古生物学
营养物
海胆
生物信息学
生物化学
作者
Paula Sánchez‐Marín,Juan Santos-Echeandía,Mar Nieto‐Cid,Xosé Antón Álvarez‐Salgado,Ricardo Beiras
标识
DOI:10.1016/j.aquatox.2009.10.005
摘要
Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4–1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (LCu) than the natural seawater used for their preparation. LCu varied from 0.08 μM in natural seawater to 0.3 and 0.5 μM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC50 of 0.64 μM, significantly higher than the Cu EC50 of natural and artificial seawater, which was 0.38 μM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC50. This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC50, while LCu correlated better with the fluorescence of marine humic substances. The present results stress the importance of characterizing not only the amount but also the quality of seawater DOM to better predict ecological effects from total metal concentration data.
科研通智能强力驱动
Strongly Powered by AbleSci AI