Improved semi-supervised online boosting for object tracking

Boosting(机器学习) 计算机科学 人工智能 分类器(UML) 判别式 模式识别(心理学) 视频跟踪 目标检测 机器学习 在线学习 监督学习 半监督学习 计算机视觉 对象(语法) 人工神经网络 万维网
作者
Yicui Li,Lin Qi,Shukun Tan
出处
期刊:Proceedings of SPIE 卷期号:10157: 101572Y-101572Y 被引量:1
标识
DOI:10.1117/12.2247211
摘要

The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xiaolong发布了新的文献求助10
刚刚
1秒前
体贴半仙完成签到,获得积分10
1秒前
1秒前
明理的以亦完成签到,获得积分10
1秒前
文艺的冷卉完成签到,获得积分20
1秒前
2秒前
科研发布了新的文献求助10
2秒前
LiQi发布了新的文献求助10
2秒前
2秒前
3秒前
yzc完成签到,获得积分10
3秒前
可爱的函函应助橘皮乌龙采纳,获得10
3秒前
绿叶完成签到,获得积分10
3秒前
3秒前
3秒前
刻苦千琴完成签到,获得积分10
4秒前
zzzhao完成签到,获得积分10
4秒前
单身的青柏完成签到 ,获得积分10
4秒前
雨荷发布了新的文献求助10
4秒前
生物科研小白完成签到 ,获得积分10
4秒前
心之所向完成签到,获得积分10
4秒前
billevans发布了新的文献求助10
4秒前
科研通AI6应助hyx采纳,获得10
4秒前
4秒前
完美世界应助wyd采纳,获得10
4秒前
ZHANGSANQI完成签到,获得积分10
5秒前
拼搏草莓完成签到,获得积分10
5秒前
sci发布了新的文献求助10
6秒前
6秒前
钱美杉发布了新的文献求助10
6秒前
6秒前
SDK发布了新的文献求助10
6秒前
bkagyin应助123采纳,获得10
6秒前
11发布了新的文献求助30
7秒前
vic303发布了新的文献求助10
7秒前
7秒前
顾矜应助刻苦的小虾米采纳,获得10
7秒前
烟花应助学术小白采纳,获得10
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313