Have you had bleeding from your gums? Self‐report to identify giNGival inflammation (The SING diagnostic accuracy and diagnostic model development study)

医学 牙龈炎症 探血 炎症 诊断准确性 利克特量表 牙科 牙龈炎 牙周炎 皮肤病科 内科学 心理学 发展心理学
作者
Beatriz Goulão,Graeme MacLennan,Craig Ramsay
出处
期刊:Journal of Clinical Periodontology [Wiley]
卷期号:48 (7): 919-928 被引量:19
标识
DOI:10.1111/jcpe.13455
摘要

Abstract Aim To assess the diagnostic performance of self‐reported oral health questions and develop a diagnostic model with additional risk factors to predict clinical gingival inflammation in systemically healthy adults in the United Kingdom. Methods Gingival inflammation was measured by trained staff and defined as bleeding on probing (present if bleeding sites ≥ 30%). Sensitivity and specificity of self‐reported questions were calculated; a diagnostic model to predict gingival inflammation was developed and its performance (calibration and discrimination) assessed. Results We included 2853 participants. Self‐reported questions about bleeding gums had the best performance: the highest sensitivity was 0.73 (95% CI 0.70, 0.75) for a Likert item and the highest specificity 0.89 (95% CI 0.87, 0.90) for a binary question. The final diagnostic model included self‐reported bleeding, oral health behaviour, smoking status, previous scale and polish received. Its area under the curve was 0.65 (95% CI 0.63–0.67). Conclusion This is the largest assessment of diagnostic performance of self‐reported oral health questions and the first diagnostic model developed to diagnose gingival inflammation. A self‐reported bleeding question or our model could be used to rule in gingival inflammation since they showed good sensitivity, but are limited in identifying healthy individuals and should be externally validated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助欢呼山雁采纳,获得10
1秒前
614521完成签到,获得积分10
2秒前
kcp发布了新的文献求助10
2秒前
小小琳发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
uupp完成签到,获得积分10
7秒前
独孤一草完成签到,获得积分10
8秒前
9秒前
10秒前
1Aaa完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
shichen完成签到 ,获得积分10
11秒前
11秒前
szy991101完成签到,获得积分10
12秒前
小小琳完成签到,获得积分20
12秒前
13秒前
西米发布了新的文献求助10
13秒前
ludemao完成签到,获得积分10
15秒前
NexusExplorer应助小小琳采纳,获得10
15秒前
15秒前
大模型应助orchid采纳,获得10
15秒前
16秒前
mirrovo完成签到 ,获得积分10
16秒前
BowieHuang应助风中松鼠采纳,获得10
16秒前
17秒前
任性的小刺猬完成签到,获得积分20
17秒前
从容的香菇完成签到,获得积分10
18秒前
无无发布了新的文献求助10
19秒前
xin关闭了xin文献求助
19秒前
脑洞疼应助火星上中蓝采纳,获得10
19秒前
shisui应助魏燃采纳,获得60
19秒前
19秒前
21秒前
21秒前
深情安青应助Natural采纳,获得10
22秒前
英姑应助温彬彬Mint_采纳,获得10
22秒前
明天剪纸完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641