化学
傅里叶变换红外光谱
钼
检出限
电极
扫描电子显微镜
金属有机骨架
核化学
无机化学
化学工程
有机化学
物理化学
材料科学
色谱法
工程类
吸附
复合材料
作者
Tafadzwa W. Murinzi,Gareth M. Watkins,Munyaradzi Shumba,Tebello Nyokong
标识
DOI:10.1080/00958972.2021.1907573
摘要
Glass carbon electrodes (GCE) were modified with metal organic frameworks (MOFs) containing molybdenum polyoxometallates (Mo POMs) in a copper benzene tricarboxylate framework (HKUST-1). The Mo POMs were introduced via one-pot synthesis (Mo2) and post-synthetic modification (Mo1) techniques. The electrode modifiers were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal analysis. The modified electrodes' oxidation capacity toward l-cysteine was studied. Mo POMs significantly improved electron transfer kinetics compared to the bare GCE. The best Mo POM doped electrode (Mo1-GCE) had a catalytic rate constant of 2.2 × 104 M−1 s−1 and a limit of detection of 3.07 × 10−7 M. Under the employed experimental conditions, the detection response for l-cysteine was very fast (within 0.1 s) for all the modified electrodes and selective toward l-cysteine in the presence of other amino acids.
科研通智能强力驱动
Strongly Powered by AbleSci AI