End-to-End Semi-Supervised Object Detection with Soft Teacher

计算机科学 人工智能 分割 水准点(测量) 目标检测 边距(机器学习) 最小边界框 模式识别(心理学) 对象(语法) 探测器 试验装置 监督学习 机器学习 人工神经网络 图像(数学) 电信 地理 大地测量学
作者
Mengde Xu,Zheng Zhang,Han Hu,Jianfeng Wang,Lijuan Wang,Fangyun Wei,Xiang Bai,Zicheng Liu
标识
DOI:10.1109/iccv48922.2021.00305
摘要

This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accurate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1%, 5% and 10%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art. The code and models will be made publicly available at https://github.com/microsoft/SoftTeacher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜狗发布了新的文献求助10
刚刚
领导范儿应助英俊溪灵采纳,获得10
刚刚
激昂的逊发布了新的文献求助10
刚刚
dpf666发布了新的文献求助10
1秒前
风中老三完成签到,获得积分10
3秒前
5秒前
Yaon-Xu完成签到,获得积分10
7秒前
7秒前
7秒前
我是老大应助勤恳元槐采纳,获得10
8秒前
蝶步韶华发布了新的文献求助10
10秒前
小菜完成签到 ,获得积分10
11秒前
jjy完成签到 ,获得积分10
12秒前
糖宝完成签到 ,获得积分10
14秒前
14秒前
jjy发布了新的文献求助10
18秒前
若雨凌风应助薛人英采纳,获得20
20秒前
zho应助李世新采纳,获得10
25秒前
蝶步韶华完成签到,获得积分10
25秒前
najcdd完成签到,获得积分20
25秒前
若尘完成签到,获得积分10
27秒前
深情安青应助钟钟采纳,获得10
28秒前
30秒前
32秒前
完美世界应助guojingjing采纳,获得10
34秒前
37秒前
勤恳元槐发布了新的文献求助10
37秒前
sdfsfds发布了新的文献求助10
38秒前
41秒前
misa完成签到 ,获得积分10
42秒前
积极丹南完成签到,获得积分20
42秒前
43秒前
Lucas应助夕夜采纳,获得10
44秒前
wanci应助sdfsfds采纳,获得10
44秒前
张宏宇发布了新的文献求助10
45秒前
绵绵冰完成签到 ,获得积分10
46秒前
guojingjing发布了新的文献求助10
46秒前
昏睡的蟠桃应助Yangyang采纳,获得200
48秒前
zho应助Billy采纳,获得10
48秒前
DD完成签到,获得积分10
53秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824388
求助须知:如何正确求助?哪些是违规求助? 3366692
关于积分的说明 10442183
捐赠科研通 3086013
什么是DOI,文献DOI怎么找? 1697672
邀请新用户注册赠送积分活动 816450
科研通“疑难数据库(出版商)”最低求助积分说明 769640