An improved sparrow search algorithm based on levy flight and opposition-based learning

数学优化 算法 局部最优 水准点(测量) 局部搜索(优化) 计算机科学 莱维航班 威尔科克森符号秩检验 理论(学习稳定性) 支持向量机 人工智能 数学 机器学习 随机游动 统计 大地测量学 地理 曼惠特尼U检验
作者
Danni Chen,Jiandong Zhao,Peng Huang,Xiongna Deng,Tingting Lu
出处
期刊:Assembly Automation [Emerald Publishing Limited]
卷期号:41 (6): 697-713 被引量:11
标识
DOI:10.1108/aa-09-2020-0134
摘要

Purpose Sparrow search algorithm (SSA) is a novel global optimization method, but it is easy to fall into local optimization, which leads to its poor search accuracy and stability. The purpose of this study is to propose an improved SSA algorithm, called levy flight and opposition-based learning (LOSSA), based on LOSSA strategy. The LOSSA shows better search accuracy, faster convergence speed and stronger stability. Design/methodology/approach To further enhance the optimization performance of the algorithm, The Levy flight operation is introduced into the producers search process of the original SSA to enhance the ability of the algorithm to jump out of the local optimum. The opposition-based learning strategy generates better solutions for SSA, which is beneficial to accelerate the convergence speed of the algorithm. On the one hand, the performance of the LOSSA is evaluated by a set of numerical experiments based on classical benchmark functions. On the other hand, the hyper-parameter optimization problem of the Support Vector Machine (SVM) is also used to test the ability of LOSSA to solve practical problems. Findings First of all, the effectiveness of the two improved methods is verified by Wilcoxon signed rank test. Second, the statistical results of the numerical experiment show the significant improvement of the LOSSA compared with the original algorithm and other natural heuristic algorithms. Finally, the feasibility and effectiveness of the LOSSA in solving the hyper-parameter optimization problem of machine learning algorithms are demonstrated. Originality/value An improved SSA based on LOSSA is proposed in this paper. The experimental results show that the overall performance of the LOSSA is satisfactory. Compared with the SSA and other natural heuristic algorithms, the LOSSA shows better search accuracy, faster convergence speed and stronger stability. Moreover, the LOSSA also showed great optimization performance in the hyper-parameter optimization of the SVM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助专注迎蕾采纳,获得10
刚刚
嘻嘻发布了新的文献求助10
1秒前
chen给waneshi的求助进行了留言
1秒前
2秒前
2秒前
2秒前
sheng应助fzzzzf采纳,获得40
2秒前
猴子大王666完成签到,获得积分10
3秒前
tangli发布了新的文献求助10
4秒前
4秒前
lihanyan666发布了新的文献求助10
6秒前
6秒前
123456777完成签到 ,获得积分10
6秒前
chen举报waneshi求助涉嫌违规
8秒前
共享精神应助靳欣妍采纳,获得10
9秒前
玖月完成签到,获得积分10
10秒前
13秒前
Jasper应助lihanyan666采纳,获得10
14秒前
李爱国应助张雯思采纳,获得10
14秒前
小蘑菇应助张雯思采纳,获得10
14秒前
深情安青应助张雯思采纳,获得10
14秒前
天天快乐应助张雯思采纳,获得10
14秒前
ding应助张雯思采纳,获得10
14秒前
隐形曼青应助张雯思采纳,获得10
14秒前
科研通AI5应助张雯思采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
无曲应助科研通管家采纳,获得20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
喜悦的依琴完成签到,获得积分10
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
科研助手6应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得20
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
科研之光应助科研通管家采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960