Growing scale-free simplices

无标度网络 有界函数 成对比较 学位分布 构造(python库) 比例(比率) 理论计算机科学 学位(音乐) 计算机科学 缩放比例 优先依附 订单(交换) 组分(热力学) 生成语法 数学 复杂网络 组合数学 人工智能 地理 物理 地图学 几何学 数学分析 财务 声学 经济 程序设计语言 热力学
作者
Kirill Kovalenko,I. Sendiña–Nadal,Nagi Khalil,Alex Dainiak,Daniil Musatov,А. М. Райгородский,K. Alfaro-Bittner,Baruch Barzel,Stefano Boccaletti
出处
期刊:Communications physics [Nature Portfolio]
卷期号:4 (1) 被引量:13
标识
DOI:10.1038/s42005-021-00538-y
摘要

The past two decades have seen significant successes in our understanding of complex networked systems, from the mapping of real-world social, biological and technological networks to the establishment of generative models recovering their observed macroscopic patterns. These advances, however, are restricted to pairwise interactions, captured by dyadic links, and provide limited insight into higher-order structure, in which a group of several components represents the basic interaction unit. Such multi-component interactions can only be grasped through simplicial complexes, which have recently found applications in social and biological contexts, as well as in engineering and brain science. What, then, are the generative models recovering the patterns observed in real-world simplicial complexes? Here we introduce, study, and characterize a model to grow simplicial complexes of order two, i.e. nodes, links and triangles, that yields a highly flexible range of empirically relevant simplicial network ensembles. Specifically, through a combination of preferential and/or non preferential attachment mechanisms, the model constructs networks with a scale-free degree distribution and an either bounded or scale-free generalized degree distribution - the latter accounting for the number of triads surrounding each link. Allowing to analytically control the scaling exponents we arrive at a highly general scheme by which to construct ensembles of synthetic complexes displaying desired statistical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无昵称完成签到 ,获得积分10
刚刚
星星2012发布了新的文献求助10
1秒前
Owen应助孔懿轩采纳,获得10
1秒前
something完成签到 ,获得积分10
1秒前
今后应助tzk采纳,获得10
2秒前
2秒前
Carmen关注了科研通微信公众号
3秒前
传奇3应助ikun采纳,获得10
5秒前
科研暴徒完成签到 ,获得积分10
6秒前
7秒前
8秒前
科研之光应助wxaaaa采纳,获得10
8秒前
李爱国应助嘤嘤怪采纳,获得10
9秒前
与点发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
huqingtao发布了新的文献求助10
13秒前
qqyqqyqqyqqy完成签到 ,获得积分10
15秒前
15秒前
小蜗牛完成签到,获得积分20
16秒前
榛苓完成签到,获得积分10
17秒前
情怀应助123采纳,获得10
17秒前
77发布了新的文献求助10
18秒前
18秒前
18秒前
舒展完成签到,获得积分10
19秒前
19秒前
renjiu完成签到,获得积分10
20秒前
Carmen发布了新的文献求助10
20秒前
Amber发布了新的文献求助10
20秒前
小蘑菇应助ting采纳,获得10
20秒前
21秒前
liberty完成签到,获得积分10
21秒前
23秒前
嘤嘤怪发布了新的文献求助10
23秒前
happy给happy的求助进行了留言
24秒前
25秒前
积极问晴完成签到,获得积分10
26秒前
CipherSage应助zwl采纳,获得10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805070
求助须知:如何正确求助?哪些是违规求助? 3350197
关于积分的说明 10347558
捐赠科研通 3066017
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 809021
科研通“疑难数据库(出版商)”最低求助积分说明 765153