Contrast Media Reduction in Computed Tomography With Deep Learning Using a Generative Adversarial Network in an Experimental Animal Study

医学 下腔静脉 对比度(视觉) 放射科 腹主动脉 核医学 主动脉 人工智能 计算机科学 外科
作者
Johannes Haubold,Gregor Jošt,Jens Theysohn,Johannes Ludwig,Yan Li,Jens Kleesiek,Benedikt M. Schaarschmidt,Michael Forsting,Felix Nensa,Hubertus Pietsch,René Hosch
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (10): 696-703 被引量:9
标识
DOI:10.1097/rli.0000000000000875
摘要

Objective This feasibility study aimed to use optimized virtual contrast enhancement through generative adversarial networks (GAN) to reduce the dose of iodine-based contrast medium (CM) during abdominal computed tomography (CT) in a large animal model. Methods Multiphasic abdominal low-kilovolt CTs (90 kV) with low (low CM, 105 mgl/kg) and normal contrast media doses (normal CM, 350 mgl/kg) were performed with 20 healthy Göttingen minipigs on 3 separate occasions for a total of 120 examinations. These included an early arterial, late arterial, portal venous, and venous contrast phase. One animal had to be excluded because of incomplete examinations. Three of the 19 animals were randomly selected and withheld for validation (18 studies). Subsequently, the GAN was trained for image-to-image conversion from low CM to normal CM (virtual CM) with the remaining 16 animals (96 examinations). For validation, region of interest measurements were performed in the abdominal aorta, inferior vena cava, portal vein, liver parenchyma, and autochthonous back muscles, and the contrast-to-noise ratio (CNR) was calculated. In addition, the normal CM and virtual CM data were presented in a visual Turing test to 3 radiology consultants. On the one hand, they had to decide which images were derived from the normal CM examination. On the other hand, they had to evaluate whether both images are pathological consistent. Results Average vascular CNR (low CM 6.9 ± 7.0 vs virtual CM 28.7 ± 23.8, P < 0.0001) and parenchymal (low CM 1.5 ± 0.7 vs virtual CM 3.8 ± 2.0, P < 0.0001) CNR increased significantly by GAN-based contrast enhancement in all contrast phases and was not significantly different from normal CM examinations (vascular: virtual CM 28.7 ± 23.8 vs normal CM 34.2 ± 28.8; parenchymal: virtual CM 3.8 ± 2.0 vs normal CM 3.7 ± 2.6). During the visual Turing testing, the radiology consultants reported that images from normal CM and virtual CM were pathologically consistent in median in 96.5% of the examinations. Furthermore, it was possible for the examiners to identify the normal CM data as such in median in 91% of the cases. Conclusions In this feasibility study, it could be demonstrated in an experimental setting with healthy Göttingen minipigs that the amount of CM for abdominal CT can be reduced by approximately 70% by GAN-based contrast enhancement with satisfactory image quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLLLLLLL完成签到,获得积分10
刚刚
su完成签到 ,获得积分10
刚刚
2275397689发布了新的文献求助10
4秒前
勤恳睿渊应助刘润豪采纳,获得10
6秒前
寂寞的白凡完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助znsmaqwdy采纳,获得10
7秒前
Liao完成签到,获得积分10
8秒前
时尚的青丝完成签到,获得积分10
9秒前
王杨发布了新的文献求助10
12秒前
Hello应助橘子果酱采纳,获得10
14秒前
14秒前
15秒前
领导范儿应助英吉利25采纳,获得10
19秒前
19秒前
Mandy发布了新的文献求助10
20秒前
znsmaqwdy发布了新的文献求助10
20秒前
勤恳睿渊应助闾丘翠琴采纳,获得10
21秒前
幽默白柏完成签到,获得积分10
22秒前
微笑高山完成签到 ,获得积分10
23秒前
英姑应助活泼的平灵采纳,获得10
25秒前
细心擎呢发布了新的文献求助10
26秒前
ding应助Dazzle123采纳,获得10
26秒前
30秒前
31秒前
迅速的岩完成签到,获得积分10
31秒前
Taylor_Zhou完成签到,获得积分10
32秒前
LIU发布了新的文献求助20
33秒前
34秒前
35秒前
橘子果酱发布了新的文献求助10
37秒前
37秒前
郭妍发布了新的文献求助30
38秒前
邓YT发布了新的文献求助10
39秒前
xinxin发布了新的文献求助10
40秒前
所所应助雪白鸿涛采纳,获得10
42秒前
ssa11sj完成签到,获得积分10
43秒前
木木完成签到 ,获得积分10
44秒前
45秒前
48秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188948
求助须知:如何正确求助?哪些是违规求助? 3724720
关于积分的说明 11735606
捐赠科研通 3401749
什么是DOI,文献DOI怎么找? 1866686
邀请新用户注册赠送积分活动 923548
科研通“疑难数据库(出版商)”最低求助积分说明 834537