Contrast Media Reduction in Computed Tomography With Deep Learning Using a Generative Adversarial Network in an Experimental Animal Study

医学 下腔静脉 对比度(视觉) 放射科 腹主动脉 核医学 主动脉 人工智能 计算机科学 外科
作者
Johannes Haubold,Gregor Jošt,Jens Theysohn,Johannes Ludwig,Yan Li,Jens Kleesiek,Benedikt M. Schaarschmidt,Michael Forsting,Felix Nensa,Hubertus Pietsch,René Hosch
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (10): 696-703 被引量:9
标识
DOI:10.1097/rli.0000000000000875
摘要

Objective This feasibility study aimed to use optimized virtual contrast enhancement through generative adversarial networks (GAN) to reduce the dose of iodine-based contrast medium (CM) during abdominal computed tomography (CT) in a large animal model. Methods Multiphasic abdominal low-kilovolt CTs (90 kV) with low (low CM, 105 mgl/kg) and normal contrast media doses (normal CM, 350 mgl/kg) were performed with 20 healthy Göttingen minipigs on 3 separate occasions for a total of 120 examinations. These included an early arterial, late arterial, portal venous, and venous contrast phase. One animal had to be excluded because of incomplete examinations. Three of the 19 animals were randomly selected and withheld for validation (18 studies). Subsequently, the GAN was trained for image-to-image conversion from low CM to normal CM (virtual CM) with the remaining 16 animals (96 examinations). For validation, region of interest measurements were performed in the abdominal aorta, inferior vena cava, portal vein, liver parenchyma, and autochthonous back muscles, and the contrast-to-noise ratio (CNR) was calculated. In addition, the normal CM and virtual CM data were presented in a visual Turing test to 3 radiology consultants. On the one hand, they had to decide which images were derived from the normal CM examination. On the other hand, they had to evaluate whether both images are pathological consistent. Results Average vascular CNR (low CM 6.9 ± 7.0 vs virtual CM 28.7 ± 23.8, P < 0.0001) and parenchymal (low CM 1.5 ± 0.7 vs virtual CM 3.8 ± 2.0, P < 0.0001) CNR increased significantly by GAN-based contrast enhancement in all contrast phases and was not significantly different from normal CM examinations (vascular: virtual CM 28.7 ± 23.8 vs normal CM 34.2 ± 28.8; parenchymal: virtual CM 3.8 ± 2.0 vs normal CM 3.7 ± 2.6). During the visual Turing testing, the radiology consultants reported that images from normal CM and virtual CM were pathologically consistent in median in 96.5% of the examinations. Furthermore, it was possible for the examiners to identify the normal CM data as such in median in 91% of the cases. Conclusions In this feasibility study, it could be demonstrated in an experimental setting with healthy Göttingen minipigs that the amount of CM for abdominal CT can be reduced by approximately 70% by GAN-based contrast enhancement with satisfactory image quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BINGBING1230发布了新的文献求助10
刚刚
JoJo完成签到,获得积分10
刚刚
lwb完成签到,获得积分10
1秒前
blingcmeng发布了新的文献求助10
1秒前
2秒前
123完成签到 ,获得积分10
2秒前
electricelectric应助NN采纳,获得30
4秒前
6秒前
一包辣条发布了新的文献求助10
6秒前
6秒前
6秒前
万能图书馆应助chenchen采纳,获得10
7秒前
8秒前
9秒前
深情安青应助玲℃采纳,获得10
10秒前
烟花应助blingcmeng采纳,获得10
10秒前
kcmat发布了新的文献求助10
12秒前
鹅鹅鹅关注了科研通微信公众号
12秒前
lc发布了新的文献求助10
13秒前
Patrick发布了新的文献求助10
13秒前
lin发布了新的文献求助10
14秒前
体贴的戾完成签到,获得积分20
14秒前
www完成签到 ,获得积分10
14秒前
鳗鱼甜瓜发布了新的文献求助10
14秒前
15秒前
丁一完成签到 ,获得积分10
15秒前
彭于晏应助lzh采纳,获得10
16秒前
一包辣条完成签到,获得积分10
16秒前
16秒前
领导范儿应助Nana采纳,获得30
17秒前
小咩完成签到 ,获得积分10
18秒前
shi0331完成签到,获得积分10
18秒前
天天快乐应助1820采纳,获得10
19秒前
小鱼发布了新的文献求助10
20秒前
21秒前
黎黎完成签到,获得积分10
21秒前
mlzmlz发布了新的文献求助40
21秒前
赘婿应助腼腆的立辉采纳,获得10
22秒前
22秒前
lc关闭了lc文献求助
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317263
求助须知:如何正确求助?哪些是违规求助? 4459787
关于积分的说明 13876293
捐赠科研通 4349775
什么是DOI,文献DOI怎么找? 2389017
邀请新用户注册赠送积分活动 1383207
关于科研通互助平台的介绍 1352484