Monitoring Network Changes in Social Media

计算机科学 中心性 社会联系 维数之咒 GSM演进的增强数据速率 社交网络(社会语言学) 动态网络分析 数据挖掘 人工智能 社会化媒体 数学 心理学 计算机网络 组合数学 万维网 心理治疗师
作者
Cathy Yi‐Hsuan Chen,Yarema Okhrin,Tengyao Wang
出处
期刊:Journal of Business & Economic Statistics [Taylor & Francis]
卷期号:: 1-16 被引量:2
标识
DOI:10.1080/07350015.2021.2016425
摘要

Econometricians are increasingly working with high-dimensional networks and their dynamics. Econometricians, however, are often confronted with unforeseen changes in network dynamics. In this article, we develop a method and the corresponding algorithm for monitoring changes in dynamic networks. We characterize two types of changes, edge-initiated and node-initiated, to feature the complexity of networks. The proposed approach accounts for three potential challenges in the analysis of networks. First, networks are high-dimensional objects causing the standard statistical tools to suffer from the curse of dimensionality. Second, any potential changes in social networks are likely driven by a few nodes or edges in the network. Third, in many dynamic network applications such as monitoring network connectedness or its centrality, it will be more practically applicable to detect the change in an online fashion than the offline version. The proposed detection method at each time point projects the entire network onto a low-dimensional vector by taking the sparsity into account, then sequentially detects the change by comparing consecutive estimates of the optimal projection direction. As long as the change is sizeable and persistent, the projected vectors will converge to the optimal one, leading to a jump in the sine angle distance between them. A change is therefore declared. Strong theoretical guarantees on both the false alarm rate and detection delays are derived in a sub-Gaussian setting, even under spatial and temporal dependence in the data stream. Numerical studies and an application to the social media messages network support the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爽歪歪完成签到,获得积分10
刚刚
猪猪hero发布了新的文献求助10
3秒前
小马甲应助limof采纳,获得10
5秒前
5秒前
5秒前
哈哈哈完成签到 ,获得积分10
5秒前
乐予完成签到,获得积分10
6秒前
研友_LMNjkn完成签到 ,获得积分10
8秒前
ShawnLyu应助bibgyueli采纳,获得10
9秒前
科研通AI5应助阿文采纳,获得20
11秒前
11秒前
13秒前
善良雅柏发布了新的文献求助10
15秒前
limof完成签到,获得积分10
16秒前
Mayer1234088完成签到,获得积分10
16秒前
害羞小虾米完成签到,获得积分10
16秒前
wangfang0228完成签到 ,获得积分10
17秒前
DODO完成签到,获得积分10
18秒前
Hezzzz完成签到,获得积分10
18秒前
limof发布了新的文献求助10
19秒前
Young完成签到,获得积分10
20秒前
所所应助DDDD采纳,获得30
20秒前
康康XY完成签到 ,获得积分10
22秒前
23秒前
24秒前
wly9399375发布了新的文献求助10
28秒前
您的慈父完成签到,获得积分20
28秒前
tianjiu发布了新的文献求助10
29秒前
Willy完成签到,获得积分10
29秒前
老西瓜完成签到,获得积分10
30秒前
梁筱筱完成签到 ,获得积分10
30秒前
344061512完成签到 ,获得积分10
33秒前
luna完成签到,获得积分10
35秒前
甜橙完成签到 ,获得积分10
35秒前
ding应助酷炫的鸡翅采纳,获得10
38秒前
xanthine完成签到,获得积分10
39秒前
cdercder应助史迪仔采纳,获得20
39秒前
41秒前
41秒前
Kenny完成签到,获得积分10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320