亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test

阴道镜检查 宫颈上皮内瘤变 子宫颈 医学 宫颈癌 卷积神经网络 人工智能 鳞状上皮内病变 细胞学 癌症 计算机科学 病理 内科学
作者
Le Fu,Wei Xia,Wei Shi,Guangxu Cao,Yetian Ruan,Xingyu Zhao,Min Liu,Su‐Mei Niu,Fang Li,Xin Gao
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:159: 104675-104675 被引量:41
标识
DOI:10.1016/j.ijmedinf.2021.104675
摘要

To develop and evaluate the colposcopy based deep learning model using all kinds of cervical images for cervical screening, and investigate the synergetic benefits of the colposcopy, the cytology test, and the HPV test for improving cervical screening performance.This study consisted of 2160 women who underwent cervical screening, there were 442 cases with the histopathological confirmed high-grade squamous intraepithelial lesion (HSIL) or cancer, and the remained 1718 women were controls. Three kinds of cervical images were acquired from colposcopy including the saline image of cervix after saline irrigation, the acetic acid image of cervix after applying acetic acid solution, and the iodine image of cervix after applying Lugol's iodine solution. Each kind of image was used to build a single-image based deep learning model by the VGG-16 convolutional neural network, respectively. A multiple-images based deep learning model was built using multivariable logistic regression (MLR) by combining the single-image based models. The performance of the visual inspection was also obtained. The results of the cytology test and HPV test were used to build a Cytology-HPV joint diagnostic model by MLR. Finally, a cross-modal integrated model was built using MLR by combining the multiple-images based deep learning model, the cytology test results, and the HPV test results. The performances of models were tested in an independent test set using the area under the receiver operating characteristic curve (AUC).The saline image, acetic acid image, and iodine image based deep learning models had AUC of 0.760, 0.791, and 0.840. The multiple-images based deep learning model achieved an improved AUC of 0.845. The AUC of the visual inspection was 0.751. The Cytology-HPV joint diagnostic model had an AUC of 0.837, which was higher than the cytology test (AUC = 0.749) and the HPV test (AUC = 0.742). The cross-modal integrated model achieved the best performance with AUC of 0.921.Combining all kinds of cervical images were benefit for improving the performance of the colposcopy based deep learning model, and more accurate cervical screening could be achieved by incorporating the colposcopy based deep learning model, the cytology test results, and the HPV test results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助yr采纳,获得10
2秒前
jintian完成签到 ,获得积分10
11秒前
碧蓝满天完成签到 ,获得积分10
11秒前
12秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
16秒前
随机科研完成签到,获得积分10
21秒前
gzy发布了新的文献求助10
21秒前
gaozengxiang完成签到,获得积分10
23秒前
完美世界应助ddd采纳,获得10
26秒前
顺心飞绿完成签到,获得积分10
27秒前
华仔应助曾经的丹彤采纳,获得10
27秒前
dm11完成签到 ,获得积分10
31秒前
37秒前
ddd发布了新的文献求助10
40秒前
苹果果汁完成签到,获得积分10
45秒前
浮游应助淑婷采纳,获得10
52秒前
qingzx完成签到 ,获得积分10
55秒前
1分钟前
轻松沛菡完成签到,获得积分20
1分钟前
Jzhaoc580完成签到 ,获得积分10
1分钟前
嘻嘻完成签到 ,获得积分10
1分钟前
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
十四叔发布了新的文献求助10
1分钟前
隐形曼青应助美丽的靖雁采纳,获得10
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
sxl完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Chnious完成签到,获得积分10
1分钟前
FashionBoy应助harrywoo采纳,获得30
1分钟前
1分钟前
犹豫梦菡完成签到 ,获得积分10
1分钟前
华仔应助一点采纳,获得10
1分钟前
1分钟前
2分钟前
泶1完成签到,获得积分10
2分钟前
lucky完成签到 ,获得积分10
2分钟前
OKC发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537295
关于积分的说明 14157098
捐赠科研通 4453879
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411562