Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer

胰腺癌 旁侵犯 生物标志物 危险系数 医学 比例危险模型 腺癌 癌症 阶段(地层学) 回顾性队列研究 队列 放射科 内科学 肿瘤科 置信区间 古生物学 生物化学 化学 生物
作者
Jiawen Yao,Kai Cao,Yang Hou,Jian Zhou,Yingda Xia,Isabella Nogues,Qike Song,Hui Jiang,Xianghua Ye,Jianping Lu,Gang Jin,H. Lü,Chuanmiao Xie,Rong Zhang,Jing Xiao,Zaiyi Liu,Feng Gao,Yafei Qi,Xuezhou Li,Yang Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3949434
摘要

Background: Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. To this end, we develop an objective and robust imaging biomarker for fully automated prediction of overall survival (OS) of pancreatic cancer by directly analyzing multiphase contrast-enhanced CT (CECT) using deep learning.Methods: This retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from five centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from two centers, was used to construct a fully-automated prognostic biomarker – DeepCT-PDAC – by training a holistic convolutional neural network for volumetric segmentation of PDAC and pancreatic anatomies and four subsequent networks for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179) to evaluate its performance, robustness, and clinical usefulness.Findings: Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts (hazard ratio [HR] 2·03, 95% CI 1·50–2·75, p<0·0001; HR 2·47, 1·35–4·53, p=0·0034) in a multivariable analysis including age, CT tumor size, tumor location, and CA 19-9. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR 2·49, 95% CI 1·89–3·28, p<0·0001; HR 2·15, 1·14–4·05, p=0·018) after adjustment for resection margin, pT stage, pN stage, tumor differentiation, perineural invasion, pathological tumor size, and treatment. For margin-negative patients, adjuvant radiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR 0·35, 95% CI 0·19–0·64, p=0·00036), but did not affect OS in the subgroup with high risk.Interpretation: Deep learning-derived CT imaging biomarker enabled objective and unbiased prediction of OS for resectable PDAC both pre- and postoperatively. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatment at the individual level.Funding: This research was supported by the National Natural Science Foundation of China (grant numbers 82071885 and 81771802 and 81771893) and the National Youth Talent Support Program of China.Declaration of Interest: We declare no competing interests.Ethical Approval: IRB approval for the retrospective review of imaging and clinical data was obtained from the local ethics committees for all cohorts. The need for informed consent was waived.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoguang li完成签到,获得积分10
2秒前
han完成签到,获得积分10
2秒前
哇咔咔完成签到 ,获得积分10
4秒前
YY完成签到 ,获得积分10
6秒前
露露完成签到,获得积分10
10秒前
Glitter完成签到 ,获得积分10
11秒前
12秒前
精明人雄完成签到,获得积分10
15秒前
找回自己完成签到,获得积分10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
ZOE应助科研通管家采纳,获得20
15秒前
来日可追应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
梦开始发布了新的文献求助30
17秒前
汶溢完成签到,获得积分10
18秒前
自然的新烟完成签到,获得积分10
19秒前
霸气的代云完成签到,获得积分10
20秒前
杨yang完成签到 ,获得积分10
24秒前
轻松博超完成签到,获得积分10
25秒前
xiaoyi完成签到 ,获得积分10
25秒前
28秒前
zhoujy完成签到,获得积分10
30秒前
Jasper应助梦开始采纳,获得10
32秒前
www完成签到,获得积分10
33秒前
义气的惜霜完成签到,获得积分10
37秒前
Ming完成签到,获得积分10
38秒前
zhangjianzeng完成签到 ,获得积分10
38秒前
zcydbttj2011完成签到 ,获得积分10
41秒前
可以2完成签到,获得积分10
41秒前
47秒前
宝儿柯察金完成签到,获得积分10
48秒前
xiaofeizhu完成签到,获得积分10
48秒前
hmhu完成签到,获得积分10
49秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139539
求助须知:如何正确求助?哪些是违规求助? 4338428
关于积分的说明 13512740
捐赠科研通 4177665
什么是DOI,文献DOI怎么找? 2290966
邀请新用户注册赠送积分活动 1291445
关于科研通互助平台的介绍 1233775