Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer

胰腺癌 旁侵犯 生物标志物 危险系数 医学 比例危险模型 腺癌 癌症 阶段(地层学) 回顾性队列研究 队列 放射科 内科学 肿瘤科 置信区间 古生物学 生物化学 化学 生物
作者
Jiawen Yao,Kai Cao,Yang Hou,Jian Zhou,Yingda Xia,Isabella Nogues,Qike Song,Hui Jiang,Xianghua Ye,Jianping Lu,Gang Jin,H. Lü,Chuanmiao Xie,Rong Zhang,Jing Xiao,Zaiyi Liu,Feng Gao,Yafei Qi,Xuezhou Li,Yang Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3949434
摘要

Background: Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. To this end, we develop an objective and robust imaging biomarker for fully automated prediction of overall survival (OS) of pancreatic cancer by directly analyzing multiphase contrast-enhanced CT (CECT) using deep learning.Methods: This retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from five centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from two centers, was used to construct a fully-automated prognostic biomarker – DeepCT-PDAC – by training a holistic convolutional neural network for volumetric segmentation of PDAC and pancreatic anatomies and four subsequent networks for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179) to evaluate its performance, robustness, and clinical usefulness.Findings: Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts (hazard ratio [HR] 2·03, 95% CI 1·50–2·75, p<0·0001; HR 2·47, 1·35–4·53, p=0·0034) in a multivariable analysis including age, CT tumor size, tumor location, and CA 19-9. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR 2·49, 95% CI 1·89–3·28, p<0·0001; HR 2·15, 1·14–4·05, p=0·018) after adjustment for resection margin, pT stage, pN stage, tumor differentiation, perineural invasion, pathological tumor size, and treatment. For margin-negative patients, adjuvant radiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR 0·35, 95% CI 0·19–0·64, p=0·00036), but did not affect OS in the subgroup with high risk.Interpretation: Deep learning-derived CT imaging biomarker enabled objective and unbiased prediction of OS for resectable PDAC both pre- and postoperatively. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatment at the individual level.Funding: This research was supported by the National Natural Science Foundation of China (grant numbers 82071885 and 81771802 and 81771893) and the National Youth Talent Support Program of China.Declaration of Interest: We declare no competing interests.Ethical Approval: IRB approval for the retrospective review of imaging and clinical data was obtained from the local ethics committees for all cohorts. The need for informed consent was waived.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁若菱完成签到,获得积分20
刚刚
科研通AI2S应助土土采纳,获得10
1秒前
3秒前
3秒前
HCF发布了新的文献求助10
6秒前
慕青应助柠檬酸采纳,获得10
10秒前
Ulysses完成签到,获得积分10
10秒前
21秒前
22秒前
柠檬酸发布了新的文献求助10
25秒前
CR7完成签到,获得积分10
25秒前
25秒前
苏su完成签到,获得积分10
26秒前
研友_Lw7MKL完成签到,获得积分10
27秒前
春酒4完成签到,获得积分10
27秒前
何阳完成签到,获得积分0
33秒前
研友_yLpQrn完成签到,获得积分10
33秒前
34秒前
34秒前
柠檬酸完成签到,获得积分10
34秒前
黄小北发布了新的文献求助30
35秒前
忧伤的慕梅完成签到 ,获得积分10
38秒前
禾苗完成签到 ,获得积分10
38秒前
39秒前
成太发布了新的文献求助10
39秒前
46秒前
独特的板凳完成签到,获得积分10
48秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
小蘑菇应助科研通管家采纳,获得10
50秒前
冰魂应助科研通管家采纳,获得10
50秒前
hyshen完成签到,获得积分10
50秒前
华仔应助科研通管家采纳,获得10
50秒前
英姑应助科研通管家采纳,获得10
51秒前
JamesPei应助科研通管家采纳,获得10
51秒前
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
54秒前
黄小北发布了新的文献求助50
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385