Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer

胰腺癌 旁侵犯 生物标志物 危险系数 医学 比例危险模型 腺癌 癌症 阶段(地层学) 回顾性队列研究 队列 放射科 内科学 肿瘤科 置信区间 古生物学 化学 生物 生物化学
作者
Jiawen Yao,Kai Cao,Yang Hou,Jian Zhou,Yingda Xia,Isabella Nogues,Qike Song,Hui Jiang,Xianghua Ye,Jianping Lu,Gang Jin,H. Lü,Chuanmiao Xie,Rong Zhang,Jing Xiao,Zaiyi Liu,Feng Gao,Yafei Qi,Xuezhou Li,Yang Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3949434
摘要

Background: Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. To this end, we develop an objective and robust imaging biomarker for fully automated prediction of overall survival (OS) of pancreatic cancer by directly analyzing multiphase contrast-enhanced CT (CECT) using deep learning.Methods: This retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from five centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from two centers, was used to construct a fully-automated prognostic biomarker – DeepCT-PDAC – by training a holistic convolutional neural network for volumetric segmentation of PDAC and pancreatic anatomies and four subsequent networks for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179) to evaluate its performance, robustness, and clinical usefulness.Findings: Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts (hazard ratio [HR] 2·03, 95% CI 1·50–2·75, p<0·0001; HR 2·47, 1·35–4·53, p=0·0034) in a multivariable analysis including age, CT tumor size, tumor location, and CA 19-9. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR 2·49, 95% CI 1·89–3·28, p<0·0001; HR 2·15, 1·14–4·05, p=0·018) after adjustment for resection margin, pT stage, pN stage, tumor differentiation, perineural invasion, pathological tumor size, and treatment. For margin-negative patients, adjuvant radiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR 0·35, 95% CI 0·19–0·64, p=0·00036), but did not affect OS in the subgroup with high risk.Interpretation: Deep learning-derived CT imaging biomarker enabled objective and unbiased prediction of OS for resectable PDAC both pre- and postoperatively. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatment at the individual level.Funding: This research was supported by the National Natural Science Foundation of China (grant numbers 82071885 and 81771802 and 81771893) and the National Youth Talent Support Program of China.Declaration of Interest: We declare no competing interests.Ethical Approval: IRB approval for the retrospective review of imaging and clinical data was obtained from the local ethics committees for all cohorts. The need for informed consent was waived.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小马甲应助lw采纳,获得10
5秒前
SciGPT应助鹅1采纳,获得10
5秒前
CipherSage应助Popeye采纳,获得30
5秒前
kenny完成签到,获得积分10
6秒前
XING完成签到 ,获得积分10
6秒前
Clever关注了科研通微信公众号
7秒前
疏水无纺布完成签到,获得积分10
7秒前
8秒前
大个应助Lion采纳,获得10
8秒前
拓跋子轩完成签到,获得积分10
8秒前
8秒前
傅剑完成签到,获得积分10
9秒前
zyc发布了新的文献求助10
9秒前
10秒前
wangxipeng完成签到,获得积分10
10秒前
11秒前
Xu完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
科研通AI2S应助msygcz采纳,获得10
13秒前
14秒前
15秒前
浪味仙发布了新的文献求助10
16秒前
万能图书馆应助王小玮采纳,获得10
16秒前
ytt发布了新的文献求助10
16秒前
小车干a发布了新的文献求助10
16秒前
Smy完成签到 ,获得积分10
17秒前
Hao完成签到,获得积分10
17秒前
ssnha完成签到 ,获得积分10
18秒前
科研黑猫完成签到,获得积分10
18秒前
Whale发布了新的文献求助10
18秒前
西瓜大蛋发布了新的文献求助10
19秒前
CAOHOU应助阔达的哲瀚采纳,获得10
21秒前
22秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977986
求助须知:如何正确求助?哪些是违规求助? 3522138
关于积分的说明 11211677
捐赠科研通 3259360
什么是DOI,文献DOI怎么找? 1799602
邀请新用户注册赠送积分活动 878476
科研通“疑难数据库(出版商)”最低求助积分说明 806918