Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study

医学 神经组阅片室 无线电技术 放射科 介入放射学 计算机断层血管造影 狭窄 分级(工程) 血管造影 超声波 易损斑块 医学物理学 内科学 土木工程 工程类 神经学 精神科
作者
Xin Jin,Yuze Li,Fei Yan,Ye Liu,Xinghua Zhang,Tao Li,Yang Li,Huijun Chen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (8): 5276-5286 被引量:16
标识
DOI:10.1007/s00330-022-08664-z
摘要

ObjectivesAn automatic system utilizing both the advantages of the neural network and the radiomics was proposed for coronary plaque detection, classification, and stenosis grading.MethodsThis study retrospectively included 505 patients with 127,763 computed tomography angiography (CTA) images from 5 medical center. A convolutional neural network (CNN) model was used to segment the coronary artery, detect the plaque candidate, and extract the image patch with high computation efficiency. The manually designed radiomics feature extractor was utilized to collect plaque patterns, followed by the different classifiers to perform the plaque classification and stenosis grading.ResultsThe CNN model achieved 100% of sensitivity and the highest positive predictive value (83.9%) than U-Net and baseline model in plaque candidate detection. Twenty-six representative radiomics features were selected to construct the classifiers. Among different models, the gradient-boosting decision tree (GBDT) achieved the best performance in plaque classification (accuracy: 87.0%, sensitivity: 83.2%, specificity: 91.4%) and stenosis grading (accuracy: 90.9%, sensitivity: 84.1%, specificity: 95.7%). GBDT also achieved the highest AUC of 0.873 in plaque classification and 0.910 in stenosis grading. The computation time of processing one patient was 56.2 ± 5.7 s which was significantly less than radiologist manual analysis (285.6 ± 134.5 s, p = 0.0001).ConclusionsIn this study, an automatic workflow was proposed to detect and analyze coronary plaques with high accuracy and efficiency, showing the potential in clinical application.Key Points • The proposed automatic system integrated deep learning and radiomics to perform the coronary plaque analysis. • The proposed automatic system achieved high accuracy in both plaque classification and stenosis grading. • The proposed automatic system was five times more efficient than radiologist manual analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挽倾颜完成签到,获得积分10
2秒前
2秒前
wys完成签到 ,获得积分10
2秒前
隐形曼青应助书文混四方采纳,获得10
2秒前
小蘑菇应助妮妮采纳,获得10
2秒前
3秒前
年轻的树叶完成签到,获得积分10
3秒前
爱学习的猫完成签到,获得积分10
4秒前
二世小卒完成签到 ,获得积分10
4秒前
立军发布了新的文献求助100
4秒前
思源应助东日采纳,获得10
6秒前
赘婿应助sdl采纳,获得10
6秒前
共享精神应助孝顺的灵萱采纳,获得10
7秒前
7秒前
小胡同学发布了新的文献求助10
7秒前
wuwanchun发布了新的文献求助10
8秒前
熊泰山完成签到 ,获得积分0
9秒前
lipel完成签到,获得积分10
9秒前
桐桐应助yin采纳,获得10
9秒前
NZH发布了新的文献求助10
10秒前
赘婿应助嘻嘻采纳,获得10
11秒前
12秒前
可可完成签到,获得积分10
12秒前
14秒前
HAHA_完成签到,获得积分10
14秒前
15秒前
17秒前
香蕉觅云应助冷酷的傲霜采纳,获得10
18秒前
NZH完成签到,获得积分10
18秒前
18秒前
张张发布了新的文献求助10
19秒前
妮妮发布了新的文献求助10
19秒前
reck发布了新的文献求助10
19秒前
爆米花应助MXene采纳,获得10
20秒前
亭子完成签到 ,获得积分10
20秒前
20秒前
努力学习ing完成签到 ,获得积分10
21秒前
21秒前
lalala发布了新的文献求助10
22秒前
sdl发布了新的文献求助10
22秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Risks and Security of Internet and Systems CRiSIS 2024 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442