A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study

医学 列线图 接收机工作特性 队列 逻辑回归 无线电技术 放射科 癌症 新辅助治疗 肿瘤科 内科学 乳腺癌
作者
Yanfen Cui,Jiayi Zhang,Zhenhui Li,Kaikai Wei,Lei Ye,Jialiang Ren,Lei Wu,Zhenwei Shi,Xiaochun Meng,Xiaotang Yang,Xin Gao
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:46: 101348-101348 被引量:97
标识
DOI:10.1016/j.eclinm.2022.101348
摘要

Accurate prediction of treatment response to neoadjuvant chemotherapy (NACT) in individual patients with locally advanced gastric cancer (LAGC) is essential for personalized medicine. We aimed to develop and validate a deep learning radiomics nomogram (DLRN) based on pretreatment contrast-enhanced computed tomography (CT) images and clinical features to predict the response to NACT in patients with LAGC.719 patients with LAGC were retrospectively recruited from four Chinese hospitals between Dec 1st, 2014 and Nov 30th, 2020. The training cohort and internal validation cohort (IVC), comprising 243 and 103 patients, respectively, were randomly selected from center I; the external validation cohort1 (EVC1) comprised 207 patients from center II; and EVC2 comprised 166 patients from another two hospitals. Two imaging signatures, reflecting the phenotypes of the deep learning and handcrafted radiomics features, were constructed from the pretreatment portal venous-phase CT images. A four-step procedure, including reproducibility evaluation, the univariable analysis, the LASSO method, and the multivariable logistic regression analysis, was applied for feature selection and signature building. The integrated DLRN was then developed for the added value of the imaging signatures to independent clinicopathological factors for predicting the response to NACT. The prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness. Kaplan-Meier survival curves based on the DLRN were used to estimate the disease-free survival (DFS) in the follow-up cohort (n = 300).The DLRN showed satisfactory discrimination of good response to NACT and yielded the areas under the receiver operating curve (AUCs) of 0.829 (95% CI, 0.739-0.920), 0.804 (95% CI, 0.732-0.877), and 0.827 (95% CI, 0.755-0.900) in the internal and two external validation cohorts, respectively, with good calibration in all cohorts (p > 0.05). Furthermore, the DLRN performed significantly better than the clinical model (p < 0.001). Decision curve analysis confirmed that the DLRN was clinically useful. Besides, DLRN was significantly associated with the DFS of patients with LAGC (p < 0.05).A deep learning-based radiomics nomogram exhibited a promising performance for predicting therapeutic response and clinical outcomes in patients with LAGC, which could provide valuable information for individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助11采纳,获得10
刚刚
koko爱吃鳗鱼饭完成签到,获得积分10
刚刚
1秒前
给我一颗糖完成签到,获得积分10
1秒前
无辜乘云完成签到,获得积分10
1秒前
HF完成签到,获得积分10
1秒前
好了没了完成签到,获得积分10
1秒前
深情安青应助927采纳,获得10
2秒前
华仔应助lizhiqian2024采纳,获得10
3秒前
3秒前
3秒前
重生之我是科研天才完成签到,获得积分10
3秒前
zz发布了新的文献求助10
3秒前
4秒前
踏实的求真完成签到,获得积分10
5秒前
garden发布了新的文献求助20
6秒前
6秒前
6秒前
91发布了新的文献求助10
6秒前
save发布了新的文献求助10
7秒前
大气的紫萍完成签到,获得积分10
8秒前
9秒前
Ree发布了新的文献求助30
9秒前
11秒前
香蕉觅云应助大方研究生采纳,获得10
11秒前
11秒前
科研通AI2S应助100采纳,获得10
12秒前
12秒前
12秒前
星辰大海应助幽默白竹采纳,获得10
13秒前
13秒前
脑洞疼应助LIUZHENGZHENG采纳,获得10
13秒前
14秒前
14秒前
科研通AI5应助冯冯采纳,获得10
14秒前
91完成签到,获得积分10
14秒前
mint发布了新的文献求助10
14秒前
mm完成签到,获得积分10
15秒前
SYX完成签到,获得积分10
15秒前
清风发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271