A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study

医学 列线图 接收机工作特性 队列 逻辑回归 无线电技术 放射科 癌症 新辅助治疗 肿瘤科 内科学 乳腺癌
作者
Yanfen Cui,Jiayi Zhang,Zhenhui Li,Kaikai Wei,Lei Ye,Jialiang Ren,Lei Wu,Zhenwei Shi,Xiaochun Meng,Xiaotang Yang,Xin Gao
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:46: 101348-101348 被引量:107
标识
DOI:10.1016/j.eclinm.2022.101348
摘要

Accurate prediction of treatment response to neoadjuvant chemotherapy (NACT) in individual patients with locally advanced gastric cancer (LAGC) is essential for personalized medicine. We aimed to develop and validate a deep learning radiomics nomogram (DLRN) based on pretreatment contrast-enhanced computed tomography (CT) images and clinical features to predict the response to NACT in patients with LAGC.719 patients with LAGC were retrospectively recruited from four Chinese hospitals between Dec 1st, 2014 and Nov 30th, 2020. The training cohort and internal validation cohort (IVC), comprising 243 and 103 patients, respectively, were randomly selected from center I; the external validation cohort1 (EVC1) comprised 207 patients from center II; and EVC2 comprised 166 patients from another two hospitals. Two imaging signatures, reflecting the phenotypes of the deep learning and handcrafted radiomics features, were constructed from the pretreatment portal venous-phase CT images. A four-step procedure, including reproducibility evaluation, the univariable analysis, the LASSO method, and the multivariable logistic regression analysis, was applied for feature selection and signature building. The integrated DLRN was then developed for the added value of the imaging signatures to independent clinicopathological factors for predicting the response to NACT. The prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness. Kaplan-Meier survival curves based on the DLRN were used to estimate the disease-free survival (DFS) in the follow-up cohort (n = 300).The DLRN showed satisfactory discrimination of good response to NACT and yielded the areas under the receiver operating curve (AUCs) of 0.829 (95% CI, 0.739-0.920), 0.804 (95% CI, 0.732-0.877), and 0.827 (95% CI, 0.755-0.900) in the internal and two external validation cohorts, respectively, with good calibration in all cohorts (p > 0.05). Furthermore, the DLRN performed significantly better than the clinical model (p < 0.001). Decision curve analysis confirmed that the DLRN was clinically useful. Besides, DLRN was significantly associated with the DFS of patients with LAGC (p < 0.05).A deep learning-based radiomics nomogram exhibited a promising performance for predicting therapeutic response and clinical outcomes in patients with LAGC, which could provide valuable information for individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李牛牛完成签到 ,获得积分10
2秒前
2秒前
丰富广缘发布了新的文献求助10
2秒前
开朗的迎丝完成签到,获得积分20
2秒前
2秒前
tt发布了新的文献求助10
3秒前
3秒前
3秒前
yym发布了新的文献求助10
4秒前
4秒前
我爱妹妹完成签到,获得积分10
5秒前
阿信必发JACS完成签到,获得积分10
6秒前
panpan完成签到,获得积分10
6秒前
7秒前
SciGPT应助手中的光采纳,获得10
8秒前
佳音发布了新的文献求助30
8秒前
9秒前
10秒前
陈老太发布了新的文献求助10
10秒前
11秒前
文lili发布了新的文献求助10
12秒前
Jason完成签到 ,获得积分10
12秒前
li完成签到,获得积分10
13秒前
小冯完成签到 ,获得积分10
14秒前
duanqianqian发布了新的文献求助30
15秒前
1851611453完成签到 ,获得积分10
15秒前
xiaofan发布了新的文献求助10
15秒前
Liufgui应助忧郁尔容采纳,获得10
16秒前
pxy关闭了pxy文献求助
16秒前
七月关注了科研通微信公众号
17秒前
佳音完成签到,获得积分20
17秒前
子车茗应助只是朋友还是采纳,获得30
18秒前
joker完成签到,获得积分10
21秒前
wqc2060完成签到,获得积分10
22秒前
金戈完成签到,获得积分10
22秒前
25秒前
pxy关闭了pxy文献求助
28秒前
小五完成签到 ,获得积分10
33秒前
longh完成签到,获得积分10
33秒前
七月发布了新的文献求助30
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4003417
求助须知:如何正确求助?哪些是违规求助? 3542800
关于积分的说明 11285447
捐赠科研通 3279954
什么是DOI,文献DOI怎么找? 1808813
邀请新用户注册赠送积分活动 884961
科研通“疑难数据库(出版商)”最低求助积分说明 810568