Annual dilated convolutional LSTM network for time charter rate forecasting

计算机科学 卷积神经网络 过度拟合 人工智能 机器学习 宪章 深度学习 循环神经网络 时间序列 滤波器(信号处理) 人工神经网络 计算机视觉 历史 考古
作者
Jixian Mo,Ruobin Gao,Jiahui Liu,Liang Du,Kum Fai Yuen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:126: 109259-109259 被引量:12
标识
DOI:10.1016/j.asoc.2022.109259
摘要

Time charter rates must be predicted accurately to assist sensible decisions in the global, highly volatile shipping market. Time charter rates are affected by multiple factors, such as second-hand ship prices, order book, Libor interest rate, etc. However, not all factors convey predictive features to anticipate the future of time charter rates. Therefore, extracting predictive features from multiple driving time series from the shipping market is crucial for forecasting purposes. Accordingly, this paper proposes a novel convolutional recurrent neural network for time charter rates forecasting under the multi-variate phenomenon. The proposed network first extracts features from the monthly time series using a novel convolutional filter, the annual dilated filter. The annual dilated convolutional filter can extract the predictive features effectively and impose a sparse input structure to prevent overfitting. Then, a recurrent neural network learns the temporal information from the convoluted features. An extensive comparison study with many baseline models, including the persistence (Naïve I), statistical models, and the state-of-art networks, is conducted on the time charter rates of six kinds of ships. The empirical results demonstrate the proposed model’s superiority in forecasting the time charter rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助明亮依琴采纳,获得10
1秒前
1秒前
xiaobai发布了新的文献求助30
2秒前
2秒前
2秒前
斯文败类应助最棒哒采纳,获得10
3秒前
云云完成签到,获得积分10
3秒前
祝雲完成签到 ,获得积分10
3秒前
Orange应助洋洋羊采纳,获得30
3秒前
动听雁山完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
大曼发布了新的文献求助10
5秒前
7秒前
领导范儿应助清秀的语堂采纳,获得10
7秒前
火星上的以蓝完成签到,获得积分10
8秒前
8秒前
8秒前
传奇3应助zll采纳,获得10
9秒前
9秒前
薛定谔的猫完成签到,获得积分10
9秒前
赘婿应助清脆火龙果采纳,获得10
9秒前
重要语薇发布了新的文献求助10
9秒前
wangruiyang完成签到 ,获得积分10
9秒前
10秒前
xiaobai完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
默认用户名完成签到,获得积分10
10秒前
11秒前
456221发布了新的文献求助10
11秒前
12秒前
AQ完成签到,获得积分20
13秒前
吴炫完成签到,获得积分10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796265
求助须知:如何正确求助?哪些是违规求助? 3341187
关于积分的说明 10304904
捐赠科研通 3057784
什么是DOI,文献DOI怎么找? 1677868
邀请新用户注册赠送积分活动 805698
科研通“疑难数据库(出版商)”最低求助积分说明 762740