Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder

电极阵列 人工耳蜗植入 电阻式触摸屏 电极 电阻抗 支持向量机 计算机科学 生物医学工程 声学 材料科学 人工智能 听力学 电气工程 工程类 物理 计算机视觉 医学 量子力学
作者
Nauman Hafeez,Xinli Du,Nikolaos V. Boulgouris,Philip Begg,Richard Irving,Chris Coulson,Guillaume Tourrel
出处
期刊:Hearing Research [Elsevier]
卷期号:412: 108371-108371 被引量:6
标识
DOI:10.1016/j.heares.2021.108371
摘要

Cochlear Implant provides an electronic substitute for hearing to severely or profoundly deaf patients. However, postoperative hearing outcomes significantly depend on the proper placement of electrode array (EA) into scala tympani (ST) during cochlear implant surgery. Due to limited intra-operative methods to access array placement, the objective of the current study was to evaluate the relationship between EA complex impedance and different insertion trajectories in a plastic ST model. A prototype system was designed to measure bipolar complex impedance (magnitude and phase) and its resistive and reactive components of electrodes. A 3-DoF actuation system was used as an insertion feeder. 137 insertions were performed from 3 different directions at a speed of 0.08 mm/s. Complex impedance data of 8 electrode pairs were sequentially recorded in each experiment. Machine learning algorithms were employed to classify both the full and partial insertion lengths. Support Vector Machine (SVM) gave the highest 97.1% accuracy for full insertion. When a real-time prediction was tested, Shallow Neural Network (SNN) model performed better than other algorithms using partial insertion data. The highest accuracy was found at 86.1% when 4 time samples and 2 apical electrode pairs were used. Direction prediction using partial data has the potential of online control of the insertion feeder for better EA placement. Accessing the position of the electrode array during the insertion has the potential to optimize its intraoperative placement that will result in improved hearing outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小丑应助尕辉采纳,获得10
1秒前
1秒前
li发布了新的文献求助10
1秒前
Momomo应助务实的乘云采纳,获得10
1秒前
XuZ完成签到,获得积分10
1秒前
1秒前
专注的兰完成签到 ,获得积分10
1秒前
kkk12245完成签到,获得积分20
2秒前
2秒前
彭于晏应助刘萌采纳,获得10
2秒前
kara发布了新的文献求助10
2秒前
zhouyms完成签到,获得积分10
2秒前
2秒前
太阳下山发布了新的文献求助10
3秒前
3秒前
WW发布了新的文献求助10
3秒前
3秒前
小马甲应助老北京采纳,获得10
4秒前
小马甲应助老北京采纳,获得10
4秒前
Lucas应助黄pp采纳,获得30
4秒前
本草石之寒温完成签到 ,获得积分10
5秒前
简单小刺猬完成签到,获得积分10
5秒前
LYY发布了新的文献求助20
5秒前
领导范儿应助123采纳,获得10
5秒前
莫西莫西完成签到,获得积分10
6秒前
慕青应助不可靠月亮采纳,获得10
6秒前
xul279完成签到,获得积分10
6秒前
一剑温柔完成签到 ,获得积分10
6秒前
飞云发布了新的文献求助10
6秒前
脑洞疼应助小李爱查文献采纳,获得10
6秒前
王俊发布了新的文献求助10
7秒前
yanmh完成签到,获得积分10
7秒前
快乐的厉发布了新的文献求助10
7秒前
jiayouYi发布了新的文献求助10
7秒前
情怀应助潘辉采纳,获得10
7秒前
7秒前
Ayan发布了新的文献求助10
7秒前
天天快乐应助你还睡得着采纳,获得10
7秒前
白蒲桃发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055