Adaptive Hypergraph Auto-Encoder for Relational Data Clustering

超图 计算机科学 聚类分析 关系数据库 理论计算机科学 数据挖掘 图形 人工智能 数学 离散数学
作者
Youpeng Hu,Xunkai Li,Yujie Wang,Yixuan Wu,Yining Zhao,Chenggang Yan,Jian Yin,Yue Gao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:19
标识
DOI:10.1109/tkde.2021.3108192
摘要

The embedded representation and clustering tasks both play important roles in relational data analysis and mining. Traditional methods mainly employ graph structure to describe relational data, but intuitive pairwise connections among nodes are insufficient to model high-order data in the real-world, such as the relations between proteins and polypeptide chains. Hypergraphs are a generalization of graphs, and hypergraphs can well model high-order data. When modeling relational data in the real world, hypergraphs are often accompanied by node attributes, i.e. attributed hypergraphs. Besides this, how to integrate the structural information and attribute information appropriately is another important task, while has not been investigated systematically. In this paper, we propose Adaptive Hypergraph Auto-Encoder(AHGAE) to learn node embeddings in low-dimensional space. Our method can utilize the high-order relation to generate embedding for clustering. It is composed of two procedures, i.e. the adaptive hypergraph Laplacian smoothing filter and the relational reconstruction auto-encoder. It has the advantage of integrating more complex data relations compared with graph-based methods, which leads to better modeling and clustering performance. The proposed method has been evaluated on hypergraph datasets and benchmark graph datasets. Experimental results and comparison with the state-of-the-art methods have demonstrated the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助103921wjk采纳,获得10
1秒前
马登完成签到,获得积分10
6秒前
AT完成签到 ,获得积分10
8秒前
10秒前
大模型应助小周采纳,获得10
10秒前
科研通AI5应助颜陌采纳,获得10
12秒前
852应助务实的听筠采纳,获得10
12秒前
103921wjk发布了新的文献求助10
13秒前
feng完成签到,获得积分10
17秒前
17秒前
CodeCraft应助zhangzhang采纳,获得10
18秒前
will214发布了新的文献求助10
18秒前
西门子云完成签到,获得积分10
21秒前
hucchongzi应助Arvilzzz采纳,获得10
22秒前
22秒前
xiaojingbao发布了新的文献求助10
22秒前
xingmeng发布了新的文献求助10
23秒前
ccccchen完成签到,获得积分10
25秒前
will214完成签到,获得积分10
26秒前
28秒前
28秒前
854fycchjh完成签到,获得积分10
29秒前
32秒前
科研通AI5应助xiaojingbao采纳,获得10
34秒前
35秒前
派大星和海绵宝宝完成签到,获得积分10
37秒前
蛋挞蛋挞发布了新的文献求助10
37秒前
闪闪雅阳发布了新的文献求助10
39秒前
christina完成签到 ,获得积分10
40秒前
酷波er应助清新的音响采纳,获得10
42秒前
芝诺的乌龟完成签到 ,获得积分0
43秒前
小二郎应助likex采纳,获得10
43秒前
研友_V8Qmr8完成签到,获得积分10
43秒前
sdfwsdfsd完成签到,获得积分10
44秒前
45秒前
sin_Lee完成签到,获得积分10
47秒前
47秒前
生椰拿铁完成签到 ,获得积分10
48秒前
传奇3应助w934420513采纳,获得30
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366