Mechanisms of dispersion of nanoparticle-decorated graphene oxide nanosheets in aqueous media: Experimental and molecular dynamics simulation study

石墨烯 色散(光学) 材料科学 氧化物 水溶液 DLVO理论 分子动力学 纳米颗粒 纳米技术 化学工程 化学 计算化学 有机化学 物理 工程类 光学 冶金 胶体
作者
Junlin Lin,Xupei Yao,Felipe Basquiroto de Souza,Kwesi Sagoe–Crentsil,Wenhui Duan
出处
期刊:Carbon [Elsevier BV]
卷期号:184: 689-697 被引量:9
标识
DOI:10.1016/j.carbon.2021.08.089
摘要

Nanoparticle-decorated graphene oxide (NP-GO) nanohybrids hold great promise in a wide range of technologies due to their remarkable synergistic properties. However, a fundamental challenge in the design of NP-GO-based materials is manipulating their dispersion during processing to develop target nano- and microstructures towards the desired performance of the end-products. Herein, we report a combined experimental and molecular dynamic simulation approach to identifying the key underlying mechanisms associated with dispersion of nanohybrids in aqueous solutions, adopting 2D nanosilica-coated GO (GOS) hybrids as a representative NP-GO. Compared with the reference GO, which agglomerated in various aqueous solutions (different ion types and concentrations), GOS exhibited excellent dispersion stability regardless of solution used. The nanosilica protected the GO sheets from detrimental chemical reactions, such as structural degradation and cross-linking with cations, enabling deprotonation to provide electrostatic repulsion corresponding to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. In addition, the nanosilica decoration acted as a physical barrier that altered the aggregation morphology of the nanohybrid, by encapsulating water molecules between the nanosheets, resulting in a low-density 3D architecture in solution. These results elucidated the fundamental mechanisms governing GOS dispersion in aqueous solutions to provide insight to the design and manufacture of NP-GO-based materials with desired behaviours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨点完成签到,获得积分10
1秒前
赘婿应助wang采纳,获得10
1秒前
1秒前
1秒前
3秒前
3秒前
跳跳妈妈完成签到,获得积分10
4秒前
优美丹雪发布了新的文献求助10
4秒前
5秒前
aa发布了新的文献求助10
6秒前
许安完成签到,获得积分10
7秒前
霖昭发布了新的文献求助10
8秒前
JamesPei应助奋斗的忆南采纳,获得10
9秒前
文武兼备完成签到,获得积分10
9秒前
Amber完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
英姑应助优美丹雪采纳,获得10
10秒前
张张完成签到,获得积分20
10秒前
11秒前
许甜甜鸭应助饼饼采纳,获得10
11秒前
科研通AI5应助紫泠榭采纳,获得10
12秒前
doriseqin完成签到,获得积分10
12秒前
汉堡包应助Aierlan611采纳,获得30
12秒前
情怀应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得30
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
科目三应助123采纳,获得10
16秒前
16秒前
jiujieweizi完成签到 ,获得积分10
17秒前
贪玩的傲菡完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835045
求助须知:如何正确求助?哪些是违规求助? 3377563
关于积分的说明 10499197
捐赠科研通 3097057
什么是DOI,文献DOI怎么找? 1705466
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772130