亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:37
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Emma采纳,获得10
6秒前
xin发布了新的文献求助20
7秒前
11秒前
16秒前
16秒前
Moo5_zzZ发布了新的文献求助30
20秒前
22秒前
元气小Liu完成签到,获得积分20
25秒前
我是谁发布了新的文献求助10
25秒前
26秒前
倩倩子发布了新的文献求助10
27秒前
29秒前
31秒前
31秒前
烟花应助Moo5_zzZ采纳,获得30
34秒前
37秒前
37秒前
浦肯野发布了新的文献求助10
37秒前
邢晓彤完成签到 ,获得积分10
39秒前
共享精神应助fourcewill采纳,获得10
41秒前
桃李春风一杯酒完成签到,获得积分10
43秒前
香蕉觅云应助我是谁采纳,获得10
46秒前
花壳在逃野猪完成签到,获得积分10
46秒前
浦肯野完成签到,获得积分10
48秒前
kd1412完成签到 ,获得积分10
49秒前
50秒前
51秒前
52秒前
吕小软完成签到,获得积分10
53秒前
俊逸沛菡完成签到 ,获得积分10
55秒前
椰椰鲨发布了新的文献求助10
55秒前
tranphucthinh发布了新的文献求助10
56秒前
57秒前
fourcewill发布了新的文献求助10
57秒前
123完成签到,获得积分20
58秒前
rigelfalcon完成签到,获得积分10
59秒前
59秒前
1分钟前
69完成签到,获得积分10
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364