Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:24
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信若之完成签到,获得积分10
刚刚
刚刚
CipherSage应助jjw123采纳,获得10
1秒前
葡萄又酸又甜完成签到 ,获得积分10
1秒前
QQQ发布了新的文献求助10
1秒前
善学以致用应助jingjingA采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
脑洞疼应助cherish采纳,获得10
2秒前
害羞问安发布了新的文献求助10
2秒前
2秒前
清新的易真完成签到,获得积分10
2秒前
2秒前
舒心笑白完成签到 ,获得积分10
3秒前
微笑绿旋应助ysysljj采纳,获得30
3秒前
SciGPT应助股价采纳,获得10
3秒前
打打应助www采纳,获得10
3秒前
自信若之发布了新的文献求助10
4秒前
4秒前
彭于彦祖应助wuming7890采纳,获得30
4秒前
4秒前
px完成签到 ,获得积分10
4秒前
喜悦的飞机完成签到,获得积分10
4秒前
Abelsci完成签到,获得积分0
4秒前
NexusExplorer应助秋天采纳,获得10
5秒前
jokery完成签到,获得积分10
6秒前
祁乐安完成签到,获得积分20
7秒前
酷酷凝云发布了新的文献求助10
7秒前
Future驳回了Ava应助
7秒前
舒适大米发布了新的文献求助10
8秒前
木子发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
12秒前
凝若霜晨完成签到,获得积分20
12秒前
12秒前
我是老大应助研友_WnqWp8采纳,获得10
12秒前
SciGPT应助维生素TD采纳,获得10
13秒前
ISLAND发布了新的文献求助10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095415
求助须知:如何正确求助?哪些是违规求助? 3633556
关于积分的说明 11517532
捐赠科研通 3344280
什么是DOI,文献DOI怎么找? 1838000
邀请新用户注册赠送积分活动 905541
科研通“疑难数据库(出版商)”最低求助积分说明 823220