已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated skin lesion segmentation using attention-based deep convolutional neural network

计算机科学 人工智能 分割 规范化(社会学) 模式识别(心理学) 深度学习 卷积神经网络 编码器 特征(语言学) 皮肤损伤 计算机视觉 医学 病理 操作系统 哲学 社会学 语言学 人类学
作者
Ridhi Arora,Balasubramanian Raman,Kritagya Nayyar,Ruchi Awasthi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:65: 102358-102358 被引量:65
标识
DOI:10.1016/j.bspc.2020.102358
摘要

Edge detection for dermoscopic images has always been a crucial task for automatic lesion delineation processes. A skin lesion is an area of the skin that takes the form an abnormal growth or appearance when compared to the skin surrounding it. The abnormal appearance is the colored area of the skin that is advised for urgent referral and treatment. The manual way of diagnosing the disease is time-consuming and not quantifiable. However, computer-aided diagnosis (CADx)-based treatment can provide aid to manual delineation by the experts in diagnosing the disease with more proficiency. To advance the digital process of segmentation, a deep learning-based end-to-end framework is proposed for automatic dermoscopic image segmentation. The framework has the modified form of U-Net, which effectively uses Group Normalization (GN) in the encoder and the decoder layers. Attention Gates (AG) focusing on minute details in the skip connection later incorporates with Tversky Loss (TL) as the output loss function are added. Instead of Batch Normalization (BN), GN is used to extract the feature maps generated by the encoding path efficiently. To distinguish high dimensional information from low-level irrelevant background regions in the input image, AGs are used. Tversky Index (TI)-based TL is applied to accomplish better alliance between recall and precision. To further strengthen feature propagation and encourage feature reuse, atrous convolutions are applied in the connecting bridge between the encoder path and the decoder path of the network. The proposed model is evaluated on the ISIC 2018 image dataset, outshone the state-of-the-art segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eason小川发布了新的文献求助10
4秒前
lune完成签到 ,获得积分10
9秒前
一只小羊发布了新的文献求助30
9秒前
静静完成签到,获得积分10
10秒前
凶狠的盛男完成签到 ,获得积分10
12秒前
19秒前
lyt完成签到,获得积分10
20秒前
20秒前
孙燕应助LANG采纳,获得10
22秒前
传奇3应助xsx采纳,获得10
22秒前
精明的问芙完成签到,获得积分10
23秒前
顾矜应助念812采纳,获得10
25秒前
vanshaw发布了新的文献求助30
27秒前
28秒前
31秒前
33秒前
33秒前
33秒前
大模型应助Eason小川采纳,获得10
34秒前
34秒前
35秒前
36秒前
37秒前
怕黑傲珊发布了新的文献求助10
38秒前
Zoey发布了新的文献求助10
39秒前
今天只做一件事应助leolee采纳,获得10
39秒前
Zoey发布了新的文献求助10
39秒前
Zoey发布了新的文献求助10
39秒前
Zoey发布了新的文献求助10
39秒前
HermitianZ发布了新的文献求助10
40秒前
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助30
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助10
40秒前
洋洋完成签到,获得积分10
41秒前
酷波er应助感动的念双采纳,获得10
42秒前
科研通AI5应助开朗的傲云采纳,获得10
42秒前
洋洋发布了新的文献求助10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833546
求助须知:如何正确求助?哪些是违规求助? 3376071
关于积分的说明 10491486
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704478
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775