A Multilayer and Multimodal-Fusion Architecture for Simultaneous Recognition of Endovascular Manipulations and Assessment of Technical Skills

建筑 计算机科学 人工智能 传统PCI 机器学习 医学 精神科 艺术 视觉艺术 心肌梗塞
作者
Xiao-Hu Zhou,Xiao‐Liang Xie,Zhen-Qiu Feng,Zeng‐Guang Hou,Gui‐Bin Bian,Ruiqi Li,Zhen-Liang Ni,Shi-Qi Liu,Yan-Jie Zhou
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (4): 2565-2577 被引量:14
标识
DOI:10.1109/tcyb.2020.3004653
摘要

The clinical success of the percutaneous coronary intervention (PCI) is highly dependent on endovascular manipulation skills and dexterous manipulation strategies of interventionalists. However, the analysis of endovascular manipulations and related discussion for technical skill assessment are limited. In this study, a multilayer and multimodal-fusion architecture is proposed to recognize six typical endovascular manipulations. The synchronously acquired multimodal motion signals from ten subjects are used as the inputs of the architecture independently. Six classification-based and two rule-based fusion algorithms are evaluated for performance comparisons. The recognition metrics under the determined architecture are further used to assess technical skills. The experimental results indicate that the proposed architecture can achieve the overall accuracy of 96.41%, much higher than that of a single-layer recognition architecture (92.85%). In addition, the multimodal fusion brings significant performance improvement in comparison with single-modal schemes. Furthermore, the K -means-based skill assessment can obtain an accuracy of 95% to cluster the attempts made by different skill-level groups. These hopeful results indicate the great possibility of the architecture to facilitate clinical skill assessment and skill learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小超人发布了新的文献求助10
1秒前
a_hu发布了新的文献求助10
2秒前
3秒前
3秒前
Wdd发布了新的文献求助10
3秒前
4秒前
7秒前
7秒前
7秒前
HHR33发布了新的文献求助10
9秒前
华仔应助嘘嘘采纳,获得10
9秒前
李爱国应助外向访卉采纳,获得10
10秒前
coolkid应助小超人采纳,获得20
11秒前
六斤米完成签到,获得积分10
11秒前
正在获取昵称中...完成签到,获得积分10
11秒前
顾矜应助荆楚小厮i采纳,获得10
12秒前
李健的粉丝团团长应助ayra采纳,获得10
12秒前
海岢完成签到,获得积分10
13秒前
无碍发布了新的文献求助10
14秒前
x的绝对值完成签到,获得积分10
14秒前
小马甲应助天天小女孩采纳,获得10
16秒前
阳光大有完成签到,获得积分10
16秒前
16秒前
sainanTang完成签到,获得积分10
17秒前
文献搬运工完成签到 ,获得积分10
17秒前
英姑应助一苇以航采纳,获得10
18秒前
18秒前
香蕉觅云应助冷酷的可乐采纳,获得10
20秒前
低调小狗完成签到,获得积分10
20秒前
Rio发布了新的文献求助10
20秒前
柯幼萱完成签到 ,获得积分10
20秒前
调皮的吐司完成签到,获得积分10
21秒前
22秒前
zjj发布了新的文献求助10
22秒前
azure发布了新的文献求助10
22秒前
科研通AI5应助方秃秃采纳,获得10
22秒前
向秋发布了新的文献求助10
24秒前
24秒前
HYLynn应助耍酷的汲采纳,获得10
24秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223