亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations

计算机科学 水准点(测量) 推荐系统 任务(项目管理) 机器学习 人工智能 多样性(控制论) 大地测量学 经济 管理 地理
作者
Hongyan Tang,Junning Liu,Ming Zhao,Xudong Gong
出处
期刊:Conference on Recommender Systems 被引量:396
标识
DOI:10.1145/3383313.3412236
摘要

Multi-task learning (MTL) has been successfully applied to many recommendation applications. However, MTL models often suffer from performance degeneration with negative transfer due to the complex and competing task correlation in real-world recommender systems. Moreover, through extensive experiments across SOTA MTL models, we have observed an interesting seesaw phenomenon that performance of one task is often improved by hurting the performance of some other tasks. To address these issues, we propose a Progressive Layered Extraction (PLE) model with a novel sharing structure design. PLE separates shared components and task-specific components explicitly and adopts a progressive routing mechanism to extract and separate deeper semantic knowledge gradually, improving efficiency of joint representation learning and information routing across tasks in a general setup. We apply PLE to both complicatedly correlated and normally correlated tasks, ranging from two-task cases to multi-task cases on a real-world Tencent video recommendation dataset with 1 billion samples, and results show that PLE outperforms state-of-the-art MTL models significantly under different task correlations and task-group size. Furthermore, online evaluation of PLE on a large-scale content recommendation platform at Tencent manifests 2.23% increase in view-count and 1.84% increase in watch time compared to SOTA MTL models, which is a significant improvement and demonstrates the effectiveness of PLE. Finally, extensive offline experiments on public benchmark datasets demonstrate that PLE can be applied to a variety of scenarios besides recommendations to eliminate the seesaw phenomenon. PLE now has been deployed to the online video recommender system in Tencent successfully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koko完成签到,获得积分20
2秒前
科研通AI5应助李星星采纳,获得10
5秒前
英俊的铭应助koko采纳,获得30
8秒前
拼搏啤酒完成签到,获得积分10
10秒前
哈哈带发布了新的文献求助10
19秒前
Oculus完成签到 ,获得积分10
24秒前
26秒前
jphu应助zjx采纳,获得30
28秒前
Iridescent完成签到 ,获得积分10
30秒前
从容芮应助kento采纳,获得50
35秒前
38秒前
圆球球发布了新的文献求助10
41秒前
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
情怀应助LiuYan采纳,获得10
48秒前
Kevin完成签到,获得积分10
56秒前
1分钟前
Lygnay.发布了新的文献求助10
1分钟前
1分钟前
1分钟前
可爱的函函应助陈青桃采纳,获得10
1分钟前
李星星发布了新的文献求助10
1分钟前
花陵完成签到 ,获得积分10
1分钟前
李星星发布了新的文献求助10
1分钟前
nolan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
hazekurt完成签到,获得积分10
1分钟前
李星星发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助yx阿聪采纳,获得10
1分钟前
烟花应助hazekurt采纳,获得10
1分钟前
爆米花应助Lygnay.采纳,获得10
1分钟前
hyx7735完成签到,获得积分10
1分钟前
王敏娜完成签到 ,获得积分10
1分钟前
葛宝言关注了科研通微信公众号
1分钟前
1分钟前
李星星发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4408812
求助须知:如何正确求助?哪些是违规求助? 3893403
关于积分的说明 12114318
捐赠科研通 3538455
什么是DOI,文献DOI怎么找? 1941671
邀请新用户注册赠送积分活动 982369
科研通“疑难数据库(出版商)”最低求助积分说明 878806