Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations

计算机科学 水准点(测量) 推荐系统 任务(项目管理) 机器学习 人工智能 多样性(控制论) 大地测量学 经济 管理 地理
作者
Hongyan Tang,Junning Liu,Ming Zhao,Xudong Gong
出处
期刊:Conference on Recommender Systems 被引量:361
标识
DOI:10.1145/3383313.3412236
摘要

Multi-task learning (MTL) has been successfully applied to many recommendation applications. However, MTL models often suffer from performance degeneration with negative transfer due to the complex and competing task correlation in real-world recommender systems. Moreover, through extensive experiments across SOTA MTL models, we have observed an interesting seesaw phenomenon that performance of one task is often improved by hurting the performance of some other tasks. To address these issues, we propose a Progressive Layered Extraction (PLE) model with a novel sharing structure design. PLE separates shared components and task-specific components explicitly and adopts a progressive routing mechanism to extract and separate deeper semantic knowledge gradually, improving efficiency of joint representation learning and information routing across tasks in a general setup. We apply PLE to both complicatedly correlated and normally correlated tasks, ranging from two-task cases to multi-task cases on a real-world Tencent video recommendation dataset with 1 billion samples, and results show that PLE outperforms state-of-the-art MTL models significantly under different task correlations and task-group size. Furthermore, online evaluation of PLE on a large-scale content recommendation platform at Tencent manifests 2.23% increase in view-count and 1.84% increase in watch time compared to SOTA MTL models, which is a significant improvement and demonstrates the effectiveness of PLE. Finally, extensive offline experiments on public benchmark datasets demonstrate that PLE can be applied to a variety of scenarios besides recommendations to eliminate the seesaw phenomenon. PLE now has been deployed to the online video recommender system in Tencent successfully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助rayce采纳,获得10
1秒前
李爱国应助DE采纳,获得10
1秒前
Lucas完成签到,获得积分10
1秒前
accept白发布了新的文献求助10
1秒前
王之争霸发布了新的文献求助10
2秒前
2秒前
2秒前
赘婿应助啦啦采纳,获得10
2秒前
沉默高跟鞋完成签到,获得积分10
2秒前
3秒前
4秒前
李健的粉丝团团长应助alan采纳,获得10
4秒前
5秒前
呆呆发布了新的文献求助10
5秒前
Ronnie完成签到,获得积分10
5秒前
5秒前
小手冰凉完成签到 ,获得积分10
5秒前
祭礼之龙完成签到,获得积分10
6秒前
文良颜丑完成签到,获得积分10
6秒前
蓝岳洋发布了新的文献求助10
6秒前
6秒前
gr完成签到,获得积分10
6秒前
7秒前
7秒前
糟糕的铁锤应助11哥采纳,获得50
7秒前
溫蒂完成签到,获得积分10
7秒前
乐乐应助myj采纳,获得10
7秒前
小蘑菇应助魔法披风采纳,获得10
8秒前
哒哒哒完成签到 ,获得积分10
9秒前
大萱发布了新的文献求助10
9秒前
缓慢的白开水完成签到,获得积分10
9秒前
9秒前
感动的红酒完成签到,获得积分10
10秒前
10秒前
2980083868发布了新的文献求助10
10秒前
文艺的又亦完成签到,获得积分10
10秒前
congguitar发布了新的文献求助10
11秒前
颿曦发布了新的文献求助10
11秒前
zys完成签到,获得积分10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813