Next-generation of instrumental odour monitoring system (IOMS) for the gaseous emissions control in complex industrial plants

过程(计算) 控制(管理) 工艺工程 工程类 计算机科学 环境监测 人工智能 环境工程 操作系统
作者
Giuseppina Oliva,Tiziano Zarra,Gianluca Pittoni,Vincenzo Senatore,Mark Gino Galang,Marco Castellani,Vincenzo Belgiorno,Vincenzo Naddeo
出处
期刊:Chemosphere [Elsevier BV]
卷期号:271: 129768-129768 被引量:38
标识
DOI:10.1016/j.chemosphere.2021.129768
摘要

Odour emissions from complex industrial plants may cause potential impacts on the surrounding areas. Consequently, the validation of effective tools for the control of the associated environmental pressures, without hindering economic growth, is strongly needed. Nowadays, senso-instrumental methods by using Instrumental Odour Emissions Systems (IOMSs) is among the most attractive tool for the continuous monitoring of environmental odours, allowing the possibility of obtaining real-time information to support the decision-making process and proactive approach. The systems complexity and scarcity of real data limited their wider full-scale employment. The study presents an advanced prototype of IOMS for the continuous classification and quantification of the odours emitted in ambient air by complex industrial plants, to continuously control the plants emissions with backwards approach. The IOMS device was designed and optimized and included the system for the automatic control of the conditions inside the measurement chamber. The designed operational procedures were presented and discussed. Results highlighted the influence of temperature and air flow rate for the measurement repeatability. Accurate prediction model was created and optimized and resulted able to distinguish 3 different industrial odour sources with accuracy approximately equal to 96%. The models were optimized thanks to the software features, which allowed to automatically apply the designed statistical procedures on the identified dataset with different pre-processing approach. The usefulness of having a fully-developed and user-friendly flexible system that allowed to select and automatically compare different settings options, including the different feature extraction methods, was demonstrated in order to identify the best prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkj发布了新的文献求助10
3秒前
3秒前
科研通AI5应助医学僧采纳,获得10
4秒前
4秒前
可靠的白枫完成签到,获得积分20
4秒前
5秒前
科研通AI5应助爱笑的半梅采纳,获得10
5秒前
明明明完成签到,获得积分10
6秒前
火星上的土豆完成签到,获得积分20
7秒前
8秒前
sanxing发布了新的文献求助10
9秒前
9秒前
情怀应助章鱼小雷子采纳,获得10
10秒前
甄姬唔恨赢完成签到,获得积分10
10秒前
明明发布了新的文献求助10
11秒前
单薄靖儿完成签到,获得积分10
11秒前
11秒前
13秒前
震动的曲奇完成签到,获得积分10
13秒前
魁梧的初兰完成签到,获得积分10
13秒前
karL完成签到,获得积分10
14秒前
喜洋洋完成签到 ,获得积分10
15秒前
太叔明辉完成签到,获得积分10
16秒前
从容前行完成签到,获得积分10
16秒前
优秀凡波发布了新的文献求助10
16秒前
shangbohan发布了新的文献求助20
18秒前
18秒前
小卡发布了新的文献求助10
19秒前
20秒前
20秒前
眼睛大的从雪完成签到,获得积分10
20秒前
钮卿完成签到,获得积分10
23秒前
科研通AI2S应助云湮采纳,获得10
23秒前
和颂发布了新的文献求助10
24秒前
皮皮发布了新的文献求助30
25秒前
研友_nqv5WZ完成签到 ,获得积分10
26秒前
小二郎应助drwang采纳,获得10
26秒前
乐乐应助drwang采纳,获得30
26秒前
27秒前
zwy109完成签到 ,获得积分10
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826701
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453658
捐赠科研通 3088582
什么是DOI,文献DOI怎么找? 1699218
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148