Popularity Prediction for Single Tweet based on Heterogeneous Bass Model

人气 计算机科学 预测建模 鲈鱼(鱼) 聚类分析 人工智能 机器学习 数据挖掘 心理学 生态学 社会心理学 生物
作者
Xiaofeng Gao,Zuowu Zheng,Quanquan Chu,Shaojie Tang,Guihai Chen,Qianni Deng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:33 (5): 2165-2178 被引量:15
标识
DOI:10.1109/tkde.2019.2952856
摘要

Predicting the popularity of a single tweet is useful for both users and enterprises. However, adopting existing topic or event prediction models cannot obtain satisfactory results. The reason is that one topic or event that consists of multiple tweets, has more features and characteristics than a single tweet. In this article, we propose two variations of Heterogeneous Bass models (HBass), originally developed in the field of marketing science, namely Spatial-Temporal Heterogeneous Bass Model (ST-HBass) and Feature-Driven Heterogeneous Bass Model (FD-HBass), to predict the popularity of a single tweet at the early stage and the stable stage. We further design an Interaction Enhancement to improve the performance, which considers the competition and cooperation from different tweets with the common topic. In addition, it is often difficult to depict popularity quantitatively. We design an experiment to get the weight of favorite, retweet and reply, and apply the linear regression to calculate the popularity. Furthermore, we design a clustering method to bound the popular threshold. Once the weight and popular threshold are determined, the status whether a tweet will be popular or not can be justified. Our model is validated by conducting experiments on real-world Twitter data, and the results show the efficiency and accuracy of our model, with less absolute percent error and the best Precision and F-score. In all, we introduce Bass model into social network single-tweet prediction to show it can achieve excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dididi发布了新的文献求助10
1秒前
luxkex发布了新的文献求助10
1秒前
沙漠大雕发布了新的文献求助10
3秒前
研友_VZG7GZ应助缓慢修杰采纳,获得30
3秒前
工藤新一完成签到,获得积分10
3秒前
ArcMayuri完成签到,获得积分10
5秒前
楼沁完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
彭于彦祖应助ZZRR采纳,获得20
8秒前
9秒前
9秒前
搜集达人应助沙漠大雕采纳,获得10
9秒前
TZ关注了科研通微信公众号
10秒前
10秒前
缪风华完成签到,获得积分10
11秒前
11秒前
ark861023发布了新的文献求助10
12秒前
我是老大应助CNSSCI采纳,获得10
12秒前
wuta发布了新的文献求助200
12秒前
寒冷荧荧完成签到,获得积分10
13秒前
齐天大圣完成签到,获得积分10
13秒前
光热效应发布了新的文献求助10
14秒前
七仔完成签到 ,获得积分10
14秒前
14秒前
在水一方应助tzk采纳,获得10
14秒前
Behappy完成签到 ,获得积分10
14秒前
梁其杰完成签到,获得积分10
14秒前
LynSharonRose完成签到,获得积分10
14秒前
15秒前
wure10发布了新的文献求助20
15秒前
15秒前
好的老师发布了新的文献求助10
16秒前
顾景行发布了新的文献求助30
16秒前
赘婿应助balko采纳,获得10
16秒前
科目三应助粗犷的书萱采纳,获得10
16秒前
17秒前
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838561
求助须知:如何正确求助?哪些是违规求助? 3380900
关于积分的说明 10516199
捐赠科研通 3100474
什么是DOI,文献DOI怎么找? 1707508
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949