Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnets

微晶 材料科学 纹理(宇宙学) 磁铁 结构精修 放电等离子烧结 纳米颗粒 中子衍射 磁性纳米粒子 复合材料 纳米技术 烧结 结晶学 晶体结构 冶金 化学 图像(数学) 物理 计算机科学 人工智能 量子力学
作者
Matilde Saura-Múzquiz,Anna Zink Eikeland,Marian Stingaciu,H.L. Andersen,Cecilia Granados‐Miralles,Maxim Avdeev,Vladimir Luzin,Mogens Christensen
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:12 (17): 9481-9494 被引量:30
标识
DOI:10.1039/d0nr01728k
摘要

Several M-type SrFe12O19 nanoparticle samples with different morphologies have been synthesized by different hydrothermal and sol-gel synthesis methods. Combined Rietveld refinements of neutron and X-ray powder diffraction data with a constrained structural model reveal a clear correlation between crystallite size and long-range magnetic order, which influences the macroscopic magnetic properties of the sample. The tailor-made powder samples were compacted into dense bulk magnets (>90% of the theoretical density) by spark plasma sintering (SPS). Powder diffraction as well as X-ray and neutron pole figure measurements and analyses have been carried out on the compacted specimens in order to characterize the nuclear (structural) and magnetic alignment of the crystallites within the dense magnets. The obtained results, combined with macroscopic magnetic measurements, reveal a direct influence of the nanoparticle morphology on the self-induced texture, crystallite growth during compaction and macroscopic magnetic performance. An increasing diameter-to-thickness aspect ratio of the platelet-like nanoparticles leads to increasing degree of crystallite alignment achieved by SPS. Consequently, magnetically aligned, highly dense magnets with excellent magnetic performance (30(3) kJ m-3) are obtained solely by nanostructuring means, without application of an external magnetic field before or during compaction. The demonstrated control over nanoparticle morphology and, in turn, crystal and magnetic texture is a key step on the way to designing nanostructured hexaferrite magnets with optimized performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助xzn采纳,获得10
刚刚
1秒前
阿飞完成签到,获得积分10
1秒前
2秒前
木木木完成签到 ,获得积分10
2秒前
有魅力的臻完成签到,获得积分10
3秒前
玛珂巴巴珂完成签到,获得积分10
3秒前
蘑菇屋应助豆浆烩面采纳,获得10
3秒前
4秒前
莫妮卡完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
喝醉酒的猫完成签到,获得积分10
6秒前
月月发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助yi采纳,获得10
9秒前
隐形觅翠完成签到,获得积分10
9秒前
左辄完成签到,获得积分10
9秒前
炙热芷蕊完成签到,获得积分20
10秒前
李健的小迷弟应助yelis采纳,获得10
17秒前
18秒前
18秒前
24秒前
慕青应助仲半邪采纳,获得10
25秒前
豆浆烩面完成签到,获得积分10
26秒前
SciGPT应助美满筮采纳,获得10
27秒前
Yiy完成签到 ,获得积分0
28秒前
ZhouYW应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
ZhouYW应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
ZhouYW应助科研通管家采纳,获得10
29秒前
CipherSage应助小扇采纳,获得10
31秒前
luwei0618发布了新的文献求助10
31秒前
33秒前
Owen应助实验一定成功采纳,获得10
33秒前
隐形曼青应助WXB采纳,获得10
34秒前
彭于晏应助百里健柏采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814439
求助须知:如何正确求助?哪些是违规求助? 3358522
关于积分的说明 10395901
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 813027
科研通“疑难数据库(出版商)”最低求助积分说明 767439