数学
数学分析
分岔图
霍普夫分叉
分岔理论
反应扩散系统
中央歧管
Dirichlet边界条件
分叉
鞍结分岔
跨临界分岔
理论(学习稳定性)
Neumann边界条件
稳态(化学)
边值问题
非线性系统
物理
机器学习
量子力学
物理化学
计算机科学
化学
作者
Xiang‐Ping Yan,Wan‐Tong Li
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2010-05-13
卷期号:23 (6): 1413-1431
被引量:64
标识
DOI:10.1088/0951-7715/23/6/008
摘要
A delayed reaction-diffusion model of the Fisher type with a single discrete delay and zero-Dirichlet boundary conditions on a general bounded open spatial domain with a smooth boundary is considered. The stability of a spatially heterogeneous positive steady state solution and the existence of Hopf bifurcation about this positive steady state solution are investigated. In particular, by using the normal form theory and the centre manifold reduction for partial functional differential equations, the stability of bifurcating periodic solutions occurring through Hopf bifurcations is investigated. It is demonstrated that the bifurcating periodic solution occurring at the first bifurcation point is orbitally asymptotically stable while those occurring at the other bifurcation points are unstable.
科研通智能强力驱动
Strongly Powered by AbleSci AI