Rheological characterization of human brain tissue

粘弹性 流变学 材料科学 奥格登 辐射冠(胚胎学) 白质 超弹性材料 人脑 非线性系统 复合材料 物理 神经科学 化学 心理学 医学 放射科 磁共振成像 激素 量子力学 生物化学 卵丘 卵泡
作者
Silvia Budday,Gerhard Sommer,Johannes Haybaeck,Paul Steinmann,Gerhard Holzapfel,Ellen Kuhl
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:60: 315-329 被引量:119
标识
DOI:10.1016/j.actbio.2017.06.024
摘要

The rheology of ultrasoft materials like the human brain is highly sensitive to regional and temporal variations and to the type of loading. While recent experiments have shaped our understanding of the time-independent, hyperelastic response of human brain tissue, its time-dependent behavior under various loading conditions remains insufficiently understood. Here we combine cyclic and relaxation testing under multiple loading conditions, shear, compression, and tension, to understand the rheology of four different regions of the human brain, the cortex, the basal ganglia, the corona radiata, and the corpus callosum. We establish a family of finite viscoelastic Ogden-type models and calibrate their parameters simultaneously for all loading conditions. We show that the model with only one viscoelastic mode and a constant viscosity captures the essential features of brain tissue: nonlinearity, pre-conditioning, hysteresis, and tension-compression asymmetry. With stiffnesses and time constants of μ∞=0.7kPa, μ1=2.0kPa, and τ1=9.7s in the gray matter cortex and μ∞=0.3kPa, μ1=0.9kPa and τ1=14.9s in the white matter corona radiata combined with negative parameters α∞ and α1, this five-parameter model naturally accounts for pre-conditioning and tissue softening. Increasing the number of viscoelastic modes improves the agreement between model and experiment, especially across the entire relaxation regime. Strikingly, two cycles of pre-conditioning decrease the gray matter stiffness by up to a factor three, while the white matter stiffness remains almost identical. These new insights allow us to better understand the rheology of different brain regions under mixed loading conditions. Our family of finite viscoelastic Ogden-type models for human brain tissue is simple to integrate into standard nonlinear finite element packages. Our simultaneous parameter identification of multiple loading modes can inform computational simulations under physiological conditions, especially at low to moderate strain rates. Understanding the rheology of the human brain will allow us to more accurately model the behavior of the brain during development and disease and predict outcomes of neurosurgical procedures.While recent experiments have shaped our understanding of the time-independent, hyperelastic response of human brain tissue, its time-dependent behavior at finite strains and under various loading conditions remains insufficiently understood. In this manuscript, we characterize the rheology of human brain tissue through a family of finite viscoelastic Ogdentype models and identify their parameters for multiple loading modes in four different regions of the brain. We show that even the simplest model of this family, with only one viscoelastic mode and five material parameters, naturally captures the essential features of brain tissue: its characteristic nonlinearity, pre-conditioning, hysteresis, and tension-compression asymmetry. For the first time, we simultaneously identify a single parameter set for shear, compression, tension, shear relaxation, and compression relaxation loading. This parameter set is significant for computational simulations under physiological conditions, where loading is naturally of mixed mode nature. Understanding the rheology of the human brain will help us predict neurosurgical procedures, inform brain injury criteria, and improve the design of protective devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助Myprince采纳,获得10
1秒前
cacy_zhou完成签到,获得积分10
1秒前
1秒前
town1223应助科研通管家采纳,获得10
2秒前
Leif应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Rasolie完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
4秒前
feifei完成签到,获得积分10
4秒前
5秒前
5秒前
8秒前
Lucas应助wrx采纳,获得10
8秒前
王肄博发布了新的文献求助10
10秒前
火星上玫瑰完成签到,获得积分10
11秒前
15秒前
学习使我快乐1917完成签到,获得积分10
16秒前
17秒前
wrx发布了新的文献求助10
18秒前
18秒前
科研通AI5应助感动的念双采纳,获得10
18秒前
mj发布了新的文献求助10
20秒前
dyh0521发布了新的文献求助10
20秒前
奥黛丽赫本完成签到,获得积分10
21秒前
21秒前
迅速勒发布了新的文献求助10
23秒前
宋嘉新完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
科研通AI5应助万尧采纳,获得10
26秒前
sscss发布了新的文献求助10
26秒前
Chengli_jian发布了新的文献求助30
27秒前
Dr大壮完成签到,获得积分10
28秒前
阿南发布了新的文献求助10
29秒前
aaa完成签到,获得积分0
30秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848752
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568084
捐赠科研通 3112149
什么是DOI,文献DOI怎么找? 1715102
邀请新用户注册赠送积分活动 825561
科研通“疑难数据库(出版商)”最低求助积分说明 775663