适体
核糖核酸
化学
荧光
选择(遗传算法)
计算生物学
生物物理学
基因
分子生物学
生物化学
生物
人工智能
物理
计算机科学
量子力学
作者
Michael R. Gotrik,Gurpreet S. Sekhon,Saumya Saurabh,Margaret Nakamoto,Michael Eisenstein,H. Tom Soh
摘要
RNA aptamers that generate a strong fluorescence signal upon binding a nonfluorescent small-molecule dye offer a powerful means for the selective imaging of individual RNA species. Unfortunately, conventional in vitro discovery methods are not efficient at generating such fluorescence-enhancing aptamers, because they primarily exert selective pressure based on target affinity—a characteristic that correlates poorly with fluorescence enhancement. Thus, only a handful of fluorescence-enhancing aptamers have been reported to date. In this work, we describe a method for converting DNA libraries into "gene-linked RNA aptamer particles" (GRAPs) that each display ∼105 copies of a single RNA sequence alongside the DNA that encodes it. We then screen large libraries of GRAPs in a high-throughput manner using the FACS instrument based directly on their fluorescence-enhancing properties. Using this strategy, we demonstrate the capability to generate fluorescence-enhancing aptamers that produce a variety of different emission wavelengths upon binding the dye of interest.
科研通智能强力驱动
Strongly Powered by AbleSci AI