已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Band clustering using expectation-maximization algorithm and weighted average fusion-based feature extraction for hyperspectral image classification

模式识别(心理学) 计算机科学 算法 特征(语言学) 降维 特征选择 k均值聚类
作者
Manoharan Prabukumar,Sawant Shrutika
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:12 (04): 046015- 被引量:17
标识
DOI:10.1117/1.jrs.12.046015
摘要

The presence of a significant amount of information in the hyperspectral image makes it suitable for numerous applications. However, extraction of the suitable and informative features from the high-dimensional data is a tedious task. A feature extraction technique using expectation–maximization (EM) clustering and weighted average fusion technique is proposed. Bhattacharya distance measure is used for computing the distance among all the spectral bands. With this distance information, the spectral bands are grouped into the clusters by employing the EM clustering method. The EM algorithm automatically converges to an optimum number of clusters, thereby specifying the absence of need for the required number of clusters. The bands in each cluster are fused together applying the weighted average fusion method. The weight of each band is calculated on the basis of the criteria of minimizing the distance inside the cluster and maximizing the distance among the different clusters. The fused bands from each cluster are then considered as the extracted features. These features are used to train the support vector machine for classification of the hyperspectral image. The performance of the proposed technique has been validated against three small-size standard bench-mark datasets, Indian Pines, Pavia University, Salinas, and one large-size dataset, Botswana. The proposed method achieves an overall accuracy (OA) of 92.19%, 94.10%, 93.96%, and 84.92% for Indian Pines, Pavia University, Salinas, and Botswana datasets, respectively. The experimental results prove that the proposed technique attains significant classification performance in terms of the OA, average accuracy, and Cohen’s kappa coefficient (k) when compared to the other competing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自行输入昵称完成签到 ,获得积分10
3秒前
SiO2完成签到 ,获得积分10
3秒前
01完成签到 ,获得积分10
4秒前
wzh发布了新的文献求助10
4秒前
开放从波完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
刘慧鑫应助科研通管家采纳,获得10
5秒前
bc应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
高效豪猪应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
欢欢完成签到,获得积分10
7秒前
时光宝石一次完成签到 ,获得积分20
7秒前
7秒前
Owen应助wzh采纳,获得10
7秒前
vv发布了新的文献求助10
8秒前
11秒前
大圣发布了新的文献求助10
11秒前
开放从波发布了新的文献求助10
12秒前
十二发布了新的文献求助20
14秒前
Yuksn发布了新的文献求助10
14秒前
16秒前
zxy完成签到,获得积分10
17秒前
ypyue完成签到,获得积分10
18秒前
牛仔很忙完成签到 ,获得积分10
19秒前
Yuksn完成签到,获得积分10
21秒前
29秒前
30秒前
情怀应助vv采纳,获得10
31秒前
饭饭完成签到,获得积分10
34秒前
35秒前
汉堡包应助十二采纳,获得20
35秒前
36秒前
英姑应助aganer采纳,获得10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833546
求助须知:如何正确求助?哪些是违规求助? 3376071
关于积分的说明 10491486
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704478
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775