A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference

卷积神经网络 推论 贝叶斯推理 贝叶斯网络 计算机科学 贝叶斯概率 人工智能 机器学习
作者
Kumar Shridhar,Felix Laumann,Marcus Liwicki
出处
期刊:Cornell University - arXiv 被引量:152
标识
DOI:10.48550/arxiv.1901.02731
摘要

Artificial Neural Networks are connectionist systems that perform a given task by learning on examples without having prior knowledge about the task. This is done by finding an optimal point estimate for the weights in every node. Generally, the network using point estimates as weights perform well with large datasets, but they fail to express uncertainty in regions with little or no data, leading to overconfident decisions. In this paper, Bayesian Convolutional Neural Network (BayesCNN) using Variational Inference is proposed, that introduces probability distribution over the weights. Furthermore, the proposed BayesCNN architecture is applied to tasks like Image Classification, Image Super-Resolution and Generative Adversarial Networks. The results are compared to point-estimates based architectures on MNIST, CIFAR-10 and CIFAR-100 datasets for Image CLassification task, on BSD300 dataset for Image Super Resolution task and on CIFAR10 dataset again for Generative Adversarial Network task. BayesCNN is based on Bayes by Backprop which derives a variational approximation to the true posterior. We, therefore, introduce the idea of applying two convolutional operations, one for the mean and one for the variance. Our proposed method not only achieves performances equivalent to frequentist inference in identical architectures but also incorporate a measurement for uncertainties and regularisation. It further eliminates the use of dropout in the model. Moreover, we predict how certain the model prediction is based on the epistemic and aleatoric uncertainties and empirically show how the uncertainty can decrease, allowing the decisions made by the network to become more deterministic as the training accuracy increases. Finally, we propose ways to prune the Bayesian architecture and to make it more computational and time effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
威威完成签到,获得积分10
1秒前
ll完成签到 ,获得积分10
1秒前
2秒前
HTJ发布了新的文献求助10
2秒前
2秒前
2秒前
lins完成签到,获得积分10
2秒前
3秒前
打打应助章半仙采纳,获得10
3秒前
赘婿应助Dream采纳,获得10
3秒前
Cumin完成签到 ,获得积分10
3秒前
yyyyy完成签到,获得积分10
4秒前
所所应助czyimba采纳,获得10
4秒前
wxp5294完成签到,获得积分10
4秒前
longquit完成签到,获得积分10
5秒前
CYANjane应助王彦林采纳,获得20
5秒前
勤耕苦读完成签到,获得积分10
5秒前
xiaole完成签到,获得积分10
5秒前
6秒前
完美世界应助Oo3采纳,获得10
6秒前
7秒前
7秒前
7秒前
parrowxg完成签到,获得积分10
7秒前
风中冰香应助难过盼海采纳,获得10
7秒前
MinQi完成签到,获得积分10
7秒前
7秒前
xiaozeng发布了新的文献求助10
8秒前
领导范儿应助哈哈哈哈哈采纳,获得10
8秒前
倩倩发布了新的文献求助10
9秒前
简单的冬瓜完成签到,获得积分10
10秒前
虚心的雁发布了新的文献求助10
10秒前
乐乐应助俊逸的草莓采纳,获得10
11秒前
GHX完成签到 ,获得积分10
12秒前
13秒前
13秒前
苗条的钻石完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524456
求助须知:如何正确求助?哪些是违规求助? 4615000
关于积分的说明 14545869
捐赠科研通 4552930
什么是DOI,文献DOI怎么找? 2495071
邀请新用户注册赠送积分活动 1475695
关于科研通互助平台的介绍 1447454