Enhanced Diagnosis of Plaque Erosion by Deep Learning in Patients With Acute Coronary Syndromes

卷积神经网络 医学 接收机工作特性 光学相干层析成像 深度学习 急性冠脉综合征 变压器 人工智能 放射科 计算机科学 心脏病学 内科学 心肌梗塞 工程类 电压 电气工程
作者
Sangjoon Park,Makoto Araki,Ayako Nakajima,Hang Lee,Valentin Fuster,Jong Chul Ye,Ik-Kyung Jang
出处
期刊:Jacc-cardiovascular Interventions [Elsevier BV]
卷期号:15 (20): 2020-2031 被引量:2
标识
DOI:10.1016/j.jcin.2022.08.040
摘要

Acute coronary syndromes caused by plaque erosion might be potentially managed conservatively without stenting. Currently, the diagnosis of plaque erosion requires expertise in optical coherence tomographic (OCT) image interpretation. In addition, the current deep learning (DL) approaches for OCT image interpretation are based on a single frame, without integrating the information from adjacent frames.The aim of this study was to develop a novel DL model to facilitate an accurate diagnosis of plaque erosion.A novel "Transformer"-based DL model was developed that integrates information from adjacent frames emulating the cardiologists who review consecutive OCT frames to make a diagnosis and compared with the standard convolutional neural network (CNN) DL model. A total of 237,021 cross-sectional OCT images from 581 patients were used for training and internal validation, and 65,394 images from 292 patients from another dataset were used for external validation. Model performances were evaluated using the area under the receiver-operating characteristic curve (AUC).For the frame-level diagnosis of plaque erosion, the Transformer model showed superior performance than the CNN model, with an AUC of 0.94 compared with 0.85 in the external validation. For the lesion-level diagnosis, the Transformer model showed improved diagnostic performance compared with the CNN model, with an AUC of 0.91 compared with 0.84 in the external validation.This newly developed Transformer model will help cardiologists diagnose plaque erosion with high accuracy in patients with acute coronary syndromes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助夏天采纳,获得10
1秒前
李健应助Zhi_S采纳,获得10
1秒前
想顺利毕业完成签到 ,获得积分10
1秒前
petrichor完成签到,获得积分10
1秒前
企鹅乌云发布了新的文献求助10
2秒前
落寞超短裙完成签到,获得积分10
2秒前
2秒前
客厅狂欢完成签到,获得积分10
3秒前
3秒前
4秒前
li完成签到,获得积分20
5秒前
xyq发布了新的文献求助10
6秒前
科研通AI5应助平常的行云采纳,获得20
6秒前
研友_Z30GJ8完成签到,获得积分0
6秒前
6秒前
瘦瘦的不尤完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
激动的映冬完成签到,获得积分10
7秒前
冰魂发布了新的文献求助10
7秒前
8秒前
tyzhet完成签到,获得积分10
8秒前
小马甲应助猪猪hero采纳,获得20
8秒前
悲凉的紊完成签到,获得积分20
9秒前
BiuBiuBiu完成签到 ,获得积分10
10秒前
刺桐花下完成签到 ,获得积分10
10秒前
10秒前
校长发布了新的文献求助10
11秒前
11秒前
11秒前
坦率的薯片完成签到,获得积分10
11秒前
坦率访梦完成签到,获得积分10
12秒前
小蘑菇应助okghy采纳,获得10
12秒前
12秒前
黄黄完成签到,获得积分0
12秒前
在水一方应助zyy采纳,获得10
12秒前
悲凉的紊发布了新的文献求助10
12秒前
sherryginyz完成签到,获得积分10
12秒前
英姑应助win采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816