A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 医学 哲学 神学 病理 操作系统
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 1-11 被引量:22
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
一路畅通accept完成签到,获得积分10
2秒前
清图完成签到,获得积分10
5秒前
阔达的水壶完成签到 ,获得积分10
6秒前
李先生完成签到,获得积分10
7秒前
艺二叁完成签到,获得积分10
9秒前
我的白起是国服完成签到 ,获得积分10
10秒前
月亮之下完成签到 ,获得积分10
15秒前
23秒前
KYT完成签到,获得积分10
25秒前
Canda完成签到 ,获得积分10
25秒前
杨杨杨完成签到,获得积分10
30秒前
开心的眼睛完成签到,获得积分10
34秒前
123完成签到,获得积分10
38秒前
月夕完成签到 ,获得积分10
50秒前
xavier完成签到,获得积分10
52秒前
Novice6354完成签到 ,获得积分10
55秒前
但大图完成签到 ,获得积分10
59秒前
qinqiny完成签到 ,获得积分10
1分钟前
尊敬的驳完成签到,获得积分10
1分钟前
Yiling完成签到,获得积分10
1分钟前
wangqinlei完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
果汁完成签到 ,获得积分10
1分钟前
帅男完成签到,获得积分10
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
刚子完成签到 ,获得积分10
1分钟前
暖羊羊Y完成签到 ,获得积分10
1分钟前
TEY完成签到 ,获得积分10
1分钟前
一只东北鸟完成签到 ,获得积分10
1分钟前
fishss完成签到,获得积分10
1分钟前
mengzhao完成签到,获得积分10
1分钟前
1分钟前
guhao完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
大猪完成签到 ,获得积分10
1分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845650
求助须知:如何正确求助?哪些是违规求助? 3387867
关于积分的说明 10550775
捐赠科研通 3108492
什么是DOI,文献DOI怎么找? 1712872
邀请新用户注册赠送积分活动 824532
科研通“疑难数据库(出版商)”最低求助积分说明 774877