The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment

水流 过程线 计算机科学 蒸散量 水文模型 气候变化 机器学习 环境科学 气候学 人工智能 流域 地质学 地图学 地理 海洋学 生物 生态学
作者
Dapeng Feng,Hylke E. Beck,Kathryn Lawson,Chaopeng Shen
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (12): 2357-2373 被引量:95
标识
DOI:10.5194/hess-27-2357-2023
摘要

Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助小李采纳,获得10
刚刚
LI发布了新的文献求助10
1秒前
大个应助cheng采纳,获得10
2秒前
2秒前
勤恳寒安完成签到,获得积分20
2秒前
2秒前
我是老大应助正直的沛凝采纳,获得10
3秒前
4秒前
neinei完成签到,获得积分10
4秒前
6秒前
6秒前
正直的彩虹完成签到,获得积分10
6秒前
今后应助Ashley采纳,获得10
7秒前
8秒前
阿透完成签到,获得积分10
8秒前
水泥酱发布了新的文献求助10
8秒前
9秒前
JamesPei应助优秀的佳儿采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
Lin发布了新的文献求助10
10秒前
想发sci、nature吧啦吧啦完成签到,获得积分10
11秒前
11秒前
Stroeve完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
GGbond发布了新的文献求助10
14秒前
GGbond发布了新的文献求助10
14秒前
GGbond发布了新的文献求助10
14秒前
GGbond发布了新的文献求助10
14秒前
GGbond发布了新的文献求助10
14秒前
ivying0209发布了新的文献求助10
14秒前
15秒前
希望天下0贩的0应助MWY采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790