Tongue image segmentation and tongue color classification based on deep learning

舌头 人工智能 分割 模式识别(心理学) 计算机科学 图像分割 计算机视觉 医学 病理
作者
Lisheng Wei,C.H.E.N. Jinming,Liefeng Bo,Huafeng Wei,W.U. Xingjin,Hui Zhang
出处
期刊:Digital Chinese medicine [Elsevier BV]
卷期号:5 (3): 253-263 被引量:11
标识
DOI:10.1016/j.dcmed.2022.10.002
摘要

To propose two novel methods based on deep learning for computer-aided tongue diagnosis, including tongue image segmentation and tongue color classification, improving their diagnostic accuracy. LabelMe was used to label the tongue mask and Snake model to optimize the labeling results. A new dataset was constructed for tongue image segmentation. Tongue color was marked to build a classified dataset for network training. In this research, the Inception + Atrous Spatial Pyramid Pooling (ASPP) + UNet (IAUNet) method was proposed for tongue image segmentation, based on the existing UNet, Inception, and atrous convolution. Moreover, the Tongue Color Classification Net (TCCNet) was constructed with reference to ResNet, Inception, and Triple-Loss. Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification. IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+ for tongue segmentation. TCCNet for tongue color classification was compared with VGG16 and GoogLeNet. IAUNet can accurately segment the tongue from original images. The results showed that the Mean Intersection over Union (MIoU) of IAUNet reached 96.30%, and its Mean Pixel Accuracy (MPA), mean Average Precision (mAP), F1-Score, G-Score, and Area Under Curve (AUC) reached 97.86%, 99.18%, 96.71%, 96.82%, and 99.71%, respectively, suggesting IAUNet produced better segmentation than other methods, with fewer parameters. Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors. The experiment yielded ideal results, with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%, respectively. IAUNet based on deep learning for tongue segmentation is better than traditional ones. IAUNet can not only produce ideal tongue segmentation, but have better effects than those of PSPNet, SegNet, UNet, and DeepLabV3+, the traditional networks. As for tongue color classification, the proposed network, TCCNet, had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的店员完成签到,获得积分10
刚刚
大气的莆完成签到 ,获得积分10
1秒前
秋菲菲完成签到,获得积分10
1秒前
1秒前
简单面包完成签到,获得积分10
2秒前
2秒前
霖槿完成签到,获得积分10
2秒前
哎呀哎呀呀完成签到,获得积分10
2秒前
想想发布了新的文献求助10
3秒前
3秒前
4秒前
活泼的便当完成签到,获得积分10
6秒前
rrlgod发布了新的文献求助10
6秒前
7秒前
windsky完成签到,获得积分10
7秒前
我是老大应助剑九黄采纳,获得10
7秒前
ymx完成签到,获得积分10
7秒前
8秒前
吴金菊发布了新的文献求助10
8秒前
9秒前
汉堡包应助若什么至采纳,获得10
9秒前
研友_n2Qv2L完成签到,获得积分10
9秒前
科目三应助玊尔采纳,获得10
9秒前
abbyi完成签到,获得积分10
10秒前
浮游应助zjj采纳,获得10
10秒前
殳戈完成签到,获得积分10
10秒前
搜集达人应助煤球叶采纳,获得30
11秒前
11秒前
英姑应助风中兰采纳,获得10
11秒前
科研通AI6应助怂怂鼠采纳,获得10
11秒前
浮游应助莱昂纳多的李采纳,获得10
12秒前
学术机器1发布了新的文献求助10
12秒前
蘸糖冰美式完成签到,获得积分10
12秒前
星辰大海应助Eddy采纳,获得10
13秒前
FashionBoy应助萧一采纳,获得10
14秒前
Index发布了新的文献求助10
14秒前
无花果应助ppat5012采纳,获得10
14秒前
朴素惜萱发布了新的文献求助10
16秒前
结实的妙梦完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969056
求助须知:如何正确求助?哪些是违规求助? 4226331
关于积分的说明 13162434
捐赠科研通 4013590
什么是DOI,文献DOI怎么找? 2196183
邀请新用户注册赠送积分活动 1209533
关于科研通互助平台的介绍 1123539