Deep convolutional transformer network for quantifying crack width in tunnel lining structures using distributed fiber optic sensing data

变压器 光纤 光纤传感器 材料科学 结构工程 计算机科学 工程类 电气工程 电信 电压
作者
Xiaolong Liao,Qixiang Yan,Qixiang Yan,Haili Hu,Minjie Qiao,Deng Lin,Chuan Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:34 (3): 035046-035046 被引量:2
标识
DOI:10.1088/1361-665x/adbd0d
摘要

Abstract Distributed fiber optic sensing (DFOS) technique provides distinct advantages for crack monitoring in infrastructure by measuring strain distribution. However, deriving crack width from measured strain data is challenging due to their complex nonlinear mapping relationship. To address this issue, this paper proposes a deep learning (DL)-based method for crack width quantification in tunnel lining structures using strain data measured by DFOS. First, simplified lining segments were cast and subjected to destructive eccentric loading tests, during which strain distributions were collected using DFOS sensors. Afterward, the collected strain sequences were appropriately segmented and labeled with corresponding crack width values to form the sample dataset. Importantly, this paper developed a novel DL framework called deep convolutional transformer network (DCT-Net), which is capable of extracting local and global sensitive features from strain data for crack width quantification. The effectiveness, noise robustness and generalization ability of the proposed DCT-Net were extensively validated. Experimental results demonstrate that the proposed approach can accurately quantify crack widths in tunnel lining segments and exhibits strong generalization. In addition, the DCT-Net outperforms current five state-of-the-art DL models, particularly under strong noisy conditions. This study will pave the way for future application of DFOS technique for intelligent monitoring and quantification of cracks in tunnel lining structures in in-situ engineering projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzwz发布了新的文献求助10
刚刚
刚刚
2hi完成签到,获得积分10
1秒前
1秒前
JamesPei应助AAAA采纳,获得10
2秒前
Barry发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏应助monned采纳,获得10
3秒前
4秒前
suohaiyun发布了新的文献求助10
4秒前
科研通AI2S应助lxm采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助150
5秒前
5秒前
6秒前
开出花来完成签到,获得积分10
6秒前
白榆完成签到 ,获得积分10
7秒前
7秒前
爆米花应助annnnnnn采纳,获得10
7秒前
开心发布了新的文献求助10
8秒前
elijah发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
马六甲发布了新的文献求助10
10秒前
金螺丝完成签到,获得积分20
10秒前
式微发布了新的文献求助10
10秒前
10秒前
11秒前
Hezzzz完成签到,获得积分10
11秒前
桐桐应助zhangyu采纳,获得10
11秒前
12秒前
科目三应助小张采纳,获得10
13秒前
13秒前
13秒前
无花果应助1111采纳,获得10
14秒前
SciGPT应助清脆的乐荷采纳,获得10
14秒前
王晨旭发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011275
求助须知:如何正确求助?哪些是违规求助? 4252811
关于积分的说明 13252238
捐赠科研通 4055253
什么是DOI,文献DOI怎么找? 2218162
邀请新用户注册赠送积分活动 1227781
关于科研通互助平台的介绍 1149744