Glomerular basement membrane thickness estimation and stratification via active semi-supervised learning model

人工智能 分割 肾小球基底膜 稳健性(进化) 卷积神经网络 医学 计算机科学 像素 模式识别(心理学) 管道(软件) 人工神经网络 再现性 相关系数 机器学习 数学 统计 肾小球肾炎 内科学 化学 程序设计语言 基因 生物化学
作者
Nico Curti,Gianluca Carlini,Sabrina Valente,Enrico Giampieri,Alessandra Merlotti,Daniel Remondini,Gaetano La Manna,Gastone Castellani,Gianandrea Pasquinelli
出处
期刊:American Journal of Nephrology [S. Karger AG]
卷期号:: 1-29
标识
DOI:10.1159/000542658
摘要

Introduction: The measure of Glomerular Basement Membrane (GBM) thickness is used as diagnostic criteria for kidney glomerular diseases. The GBM thickness measurement, a time-consuming task, is performed by expert pathologists on transmission electron microscopy (TEM) images, therefore, it is affected by subjectivity and reproducibility issues. Methods: Here we introduce a fully automated pipeline for the GBM segmentation and successive thickness estimation, starting from TEM images. This method is based on an active semi-supervised learning training procedure of a convolutional neural network model. Starting from the areas automatically identified by the model, we provide a robust measurement of membrane thickness using pixels distance matrix and computer vision techniques. Using these values, we trained a machine learning model to automatically determine the GBM thickness. To verify the accuracy of the method, we compared the predicted results with the full iconographic materials and diagnostic record reports from 42 renal biopsies having normal-thick (n. 21), thin- (n. 10), thick-GBM (n. 11). Results: The obtained segmentations were used for the automated estimation of GBM thickness via computer vision algorithms and compared with manual measurements, obtaining a correlation of Pearson’s R2 of 0.85. The GBM thickness was stratified into 3 classes, namely normal, thin, thick with a 0.63 Matthews correlation coefficient and a 0.76 accuracy. Conclusion: The proposed pipeline obtained state-of-the-art performance in GBM segmentation, proving its robustness under image variations, such as magnification, contrast, and complex geometrical shapes. Automated measures could assist clinicians in standard clinical practice speeding up routine procedures with high diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的皮皮虾完成签到,获得积分10
1秒前
星辰大海应助yushanriqing采纳,获得10
1秒前
王sir完成签到,获得积分10
1秒前
共享精神应助树袋采纳,获得10
1秒前
struggle完成签到 ,获得积分10
2秒前
2秒前
天真之桃完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助50
5秒前
5秒前
鹤轸发布了新的文献求助10
6秒前
浅浅发布了新的文献求助30
7秒前
7秒前
深情安青应助howeVer采纳,获得10
9秒前
凡`完成签到,获得积分10
9秒前
爆米花应助开心小松鼠采纳,获得10
10秒前
10秒前
Ava应助ChemMa采纳,获得10
10秒前
科目三应助奥利奥爱好者采纳,获得10
10秒前
自由访烟发布了新的文献求助10
12秒前
12秒前
13秒前
olekravchenko发布了新的文献求助10
14秒前
刺猬完成签到,获得积分10
14秒前
无私夏之完成签到,获得积分10
15秒前
彭于彦祖应助fengdengjin采纳,获得150
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
无私夏之发布了新的文献求助10
18秒前
18秒前
FashionBoy应助Jbiolover采纳,获得10
18秒前
gong9456完成签到,获得积分10
19秒前
nownow完成签到,获得积分10
19秒前
半夏完成签到,获得积分10
19秒前
哒布6发布了新的文献求助10
19秒前
19秒前
20秒前
tk发布了新的文献求助10
20秒前
陈琛发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786223
求助须知:如何正确求助?哪些是违规求助? 5692914
关于积分的说明 15469293
捐赠科研通 4915166
什么是DOI,文献DOI怎么找? 2645571
邀请新用户注册赠送积分活动 1593321
关于科研通互助平台的介绍 1547639