析氧
过电位
非阻塞I/O
塔菲尔方程
材料科学
氧化物
化学工程
分解水
电子转移
电催化剂
无机化学
化学
电化学
电极
物理化学
催化作用
冶金
光催化
生物化学
工程类
作者
Jeong In Jeon,Seunghwan Jo,Dae‐Hyun Kim,Ki-Hoon Shin,Jung Inn Sohn,John Hong
出处
期刊:Small
[Wiley]
日期:2025-05-05
标识
DOI:10.1002/smll.202501449
摘要
Abstract In transition metal oxide (TMO) based oxygen evolution reactions (OER) electrocatalysts, the lattice oxygen‐mediated mechanism (LOM) has emerged as a more efficient pathway for OER compared to the traditional adsorbate evolution mechanism (AEM). LOM activation critically depends on covalency of transition metals (TMs) with high‐valence states. In this study, we leverage the high electron affinity and strong oxophilicity of cerium (Ce) to fine‐tune the TM‐O bonding state of NiO through a one‐step electrodeposition method. Ce and Ni co‐electrodeposition forms a CeO 2 /NiO heterostructure that shifts from AEM to LOM via enhanced covalency between high‐ valence Ni and lattice oxygen and promotes electron transfer from NiO to CeO 2 . This CeO 2 /NiO heterostructure achieves a low overpotential of 160 mV and a Tafel slope of 32.68 mV dec ⁻1 at 10 mA cm ⁻2 . Additionally, it exhibits a low cell voltage of 1.84 V and only a 1.19% voltage increase over 100 h at a high current density of 1 A cm ⁻2 in an anion exchange membrane water electrolyzer. These results represent the role of oxophilic Ce and CeO 2 in stabilizing the Ni oxidation states, thereby ensuring superior LOM‐driven OER performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI