Tensile strain as an efficient way to tune transport properties of Graphdiyne/Borophene hetero-bilayers; a first principle investigation

材料科学 硼酚 拉伸应变 极限抗拉强度 拉伤 凝聚态物理 复合材料 纳米技术 石墨烯 医学 物理 内科学
作者
Seifollah Jalili,Atena Pakzadiyan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:224: 112161-112161 被引量:19
标识
DOI:10.1016/j.commatsci.2023.112161
摘要

Thermoelectric materials have attracted much attention due to their crucial role in heat conversion and cooling applications. Transport properties effectively conduct thermoelectricity efficiency, and therefore, many studies have particularly focused on enhancing these features. In the present study, through periodic density functional theory combined with semi-classical transport formulations, the influence of strain on thermoelectric characteristics of Graphdiyne/Borophene hetero-bilayers has been investigated. Based on mechanical properties data, we have shown that bilayer construction causes an increase in the ultimate stress of constituent monolayers. The maximum strain that each hetero-bilayer can withstand is determined by using stress-strain behavior. Among the studied hetero-bilayers, GBS0 has the most value of Young’s modulus [1], [2] under equibiaxial strain. Temperature-dependent transport properties of strained hetero-bilayers suggest strain as an efficient way to tune the thermoelectric behavior of hetero-bilayers. The introduction of uni- and biaxial strains affects the electrical and thermal conductivity of GBS0 and GBS1. Furthermore, the power factor and figure of merit, as the key elements of thermoelectric devices, can be significantly engineered under external tensions. The impact of tensile strain on the Seebeck effect is disclosed. Surprisingly, the studied hetero-bilayers can possess either positive or negative Seebeck coefficients under different modes of external strains. The present research extends the strain field, particularly in the rational design of thermoelectric devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
青木瓜子发布了新的文献求助10
1秒前
qwe完成签到,获得积分10
1秒前
duang发布了新的文献求助10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得30
1秒前
只争朝夕应助科研通管家采纳,获得10
2秒前
852应助glycine采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
ljkshr应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
长言完成签到 ,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
808bass应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Jared应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
夕荀发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
懒骨头兄应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320