Imaging‐based risk stratification of patients with pulmonary embolism based on dual‐energy CT‐derived radiomics

无线电技术 医学 接收机工作特性 肺栓塞 人工智能 放射科 医学影像学 决策树 机器学习 计算机科学 内科学
作者
Jennifer Gotta,Vitali Koch,Tobias Geyer,Simon S. Martin,Christian Booz,Scherwin Mahmoudi,Katrin Eichler,Philipp Reschke,Tommaso D’Angelo,Konrad Klimek,Thomas J. Vogl,Leon D. Gruenewald
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (4) 被引量:5
标识
DOI:10.1111/eci.14139
摘要

Abstract Background Technological progress in the acquisition of medical images and the extraction of underlying quantitative imaging data has introduced exciting prospects for the diagnostic assessment of a wide range of conditions. This study aims to investigate the diagnostic utility of a machine learning classifier based on dual‐energy computed tomography (DECT) radiomics for classifying pulmonary embolism (PE) severity and assessing the risk for early death. Methods Patients who underwent CT pulmonary angiogram (CTPA) between January 2015 and March 2022 were considered for inclusion in this study. Based on DECT imaging, 107 radiomic features were extracted for each patient using standardized image processing. After dividing the dataset into training and test sets, stepwise feature reduction based on reproducibility, variable importance and correlation analyses were performed to select the most relevant features; these were used to train and validate the gradient‐boosted tree models. Results The trained machine learning classifier achieved a classification accuracy of .90 for identifying high‐risk PE patients with an area under the receiver operating characteristic curve of .59. This CT‐based radiomics signature showed good diagnostic accuracy for risk stratification in individuals presenting with central PE, particularly within higher risk groups. Conclusion Models utilizing DECT‐derived radiomics features can accurately stratify patients with pulmonary embolism into established clinical risk scores. This approach holds the potential to enhance patient management and optimize patient flow by assisting in the clinical decision‐making process. It also offers the advantage of saving time and resources by leveraging existing imaging to eliminate the necessity for manual clinical scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHH发布了新的文献求助30
3秒前
酒酿是也完成签到 ,获得积分10
4秒前
4秒前
4秒前
脑洞疼应助我爱科研采纳,获得10
5秒前
星辰大海应助小李攻攻采纳,获得10
7秒前
我一进来就看到常威在打来福完成签到,获得积分10
7秒前
sylinmm完成签到,获得积分10
7秒前
醉熏的水绿完成签到 ,获得积分10
8秒前
8秒前
Silvery完成签到,获得积分10
9秒前
houfei发布了新的文献求助10
10秒前
11秒前
Ava应助踏实谷蓝采纳,获得10
13秒前
时差完成签到,获得积分10
13秒前
呵呵完成签到,获得积分10
13秒前
星辰大海应助子子子子瞻采纳,获得10
14秒前
食化狂徒发布了新的文献求助10
14秒前
15秒前
Silvery发布了新的文献求助10
16秒前
17秒前
Tess完成签到,获得积分10
17秒前
kitty关注了科研通微信公众号
19秒前
马保国123完成签到,获得积分10
20秒前
羊羊完成签到 ,获得积分10
22秒前
22秒前
赘婿应助马保国123采纳,获得10
24秒前
25秒前
隐形曼青应助顺心孤兰采纳,获得10
25秒前
彭于晏应助Rosaline采纳,获得10
27秒前
efengmo完成签到,获得积分10
28秒前
利乐发布了新的文献求助30
28秒前
慕青应助dachang采纳,获得10
29秒前
29秒前
西西完成签到 ,获得积分10
30秒前
取法乎上发布了新的文献求助10
31秒前
李健应助爱科研的小孙孙采纳,获得10
33秒前
李奚完成签到,获得积分10
34秒前
小慕斯应助wangtaoi采纳,获得30
34秒前
chengya发布了新的文献求助10
34秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056230
求助须知:如何正确求助?哪些是违规求助? 3594329
关于积分的说明 11419977
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825613
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971