Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence

机器学习 医学 接收机工作特性 人工智能 糖尿病足 共病 糖尿病 内科学 计算机科学 内分泌学
作者
Chien Wei Oei,Yam Meng Chan,Xiaojin Zhang,K. H. Leo,Enming Yong,Rhan Chaen Chong,Qiantai Hong,Li Zhang,Ying Pan,Glenn Wei Leong Tan,Malcolm Han Wen Mak
出处
期刊:Journal of diabetes science and technology [SAGE Publishing]
被引量:2
标识
DOI:10.1177/19322968241228606
摘要

Background: Diabetic foot ulcers (DFUs) are serious complications of diabetes which can lead to lower extremity amputations (LEAs). Risk prediction models can identify high-risk patients who can benefit from early intervention. Machine learning (ML) methods have shown promising utility in medical applications. Explainable modeling can help its integration and acceptance. This study aims to develop a risk prediction model using ML algorithms with explainability for LEA in DFU patients. Methods: This study is a retrospective review of 2559 inpatient DFU episodes in a tertiary institution from 2012 to 2017. Fifty-one features including patient demographics, comorbidities, medication, wound characteristics, and laboratory results were reviewed. Outcome measures were the risk of major LEA, minor LEA and any LEA. Machine learning models were developed for each outcome, with model performance evaluated using receiver operating characteristic (ROC) curves, balanced-accuracy and F1-score. SHapley Additive exPlanations (SHAP) was applied to interpret the model for explainability. Results: Model performance for prediction of major, minor, and any LEA event achieved ROC of 0.820, 0.637, and 0.756, respectively, with XGBoost, XGBoost, and Gradient Boosted Trees algorithms demonstrating best results for each model, respectively. Using SHAP, key features that contributed to the predictions were identified for explainability. Total white cell (TWC) count, comorbidity score and red blood cell count contributed highest weightage to major LEA event. Total white cell, eosinophils, and necrotic eschar in the wound contributed most to any LEA event. Conclusions: Machine learning algorithms performed well in predicting the risk of LEA in a patient with DFU. Explainability can help provide clinical insights and identify at-risk patients for early intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Aileen发布了新的文献求助10
3秒前
3秒前
冰魂应助失眠夜玉采纳,获得10
3秒前
西瓜完成签到,获得积分20
3秒前
3秒前
领导范儿应助冷山采纳,获得10
5秒前
lewis_xl完成签到,获得积分10
5秒前
LM发布了新的文献求助10
6秒前
伏线发布了新的文献求助10
7秒前
tfq200发布了新的文献求助10
8秒前
xuehuali发布了新的文献求助10
9秒前
13秒前
Rita发布了新的文献求助10
14秒前
大个应助傢誠采纳,获得10
15秒前
15秒前
心肌细胞完成签到,获得积分10
17秒前
17秒前
xuehuali完成签到,获得积分20
18秒前
默默完成签到 ,获得积分10
18秒前
18秒前
哈哈发布了新的文献求助10
19秒前
科研通AI5应助自由山槐采纳,获得30
19秒前
心肌细胞发布了新的文献求助10
22秒前
22秒前
zhangpeng发布了新的文献求助10
23秒前
24秒前
C.Z.Young应助追寻的问玉采纳,获得10
24秒前
傢誠发布了新的文献求助10
26秒前
27秒前
小蘑菇应助春瞳采纳,获得10
29秒前
feng发布了新的文献求助10
29秒前
hl发布了新的文献求助10
30秒前
伏线完成签到 ,获得积分10
30秒前
Aileen完成签到,获得积分10
31秒前
共享精神应助吴若魔采纳,获得10
32秒前
桐桐应助NingZH采纳,获得10
33秒前
小房子完成签到,获得积分10
34秒前
与yu完成签到,获得积分20
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814439
求助须知:如何正确求助?哪些是违规求助? 3358522
关于积分的说明 10395901
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 813027
科研通“疑难数据库(出版商)”最低求助积分说明 767439